GOOGLE

Created: 2019-03-20

Dynamic Depth Version' 10

This document is made available under the Creative Commons Attribution 4.0 License.

Dynamic Depth 1.0 1

https://creativecommons.org/licenses/by/4.0/

Contents

Contents

Overview
Preface
Objective
Target audience
Use cases
Augmented Reality (AR) photos
Depth photos

Normative References

Data Structure
Elements
Media Data Encoding
Concatenated File Container

ISO Box Media File Format Container

Namespace Requirements
Non-standard Usage
Compatibility

Profiles
Profile and Use Case Extension
Profile: Depth Photo
Required Depth Photo Elements
Profile
Cameras
Primary image
Image and depth map correlation
Profile: Augmented Reality (AR) Photo
Dynamic Depth Elements
Required
Profile
Device
Camera

(>0 &) BENG, BN) NS BN G NS) N V)

10
10
11
11
11
11

12
12
12
13
13
13
13
13
14
14
14
14
14
14

Dynamic Depth 1.0

Poses and Coordinate Systems

Conventions
Earth Coordinate System
Realm Coordinate System
Object Coordinate System
Orientation data format
Transform Naming Conventions

Element Definitions

Device

Container Element

Item Element

Iltem Mime Type Values

Profile

Vendor Information

Application Information

Earth Pose

Pose

Camera

Image
ltemSemantic

Light Estimate

Plane

Imaging Model

Depth Map
Depth Data
RangeLinear
Rangelnverse
FocalTable
Confidence Maps
ltemSemantic
Depth Map Definition

Point Cloud

Appendix

EXIF Consistency

Coordinate systems
Earth Coordinate System
Realm Coordinate System

16
17
17
18
19
19
19

21
21
23
23
24
25
26
27
28
29
31
33
33
34
35
36
39
39
40
40
40
41
42
42
44

45
45
45
45
45

Dynamic Depth 1.0

Camera Coordinate System 45

Image Coordinate System 47

Object Coordinate System 48
Dynamic Depth Poses 48
Device:RealmPose 48
Camera:CameraPose 49
Plane:PlanePose 49
Applnfo Pose Guidelines 50

Parts of this document derived from the Extensible Device Metadata specification are licensed under the
Creative Commons Attribution 4.0 License.

Dynamic Depth 1.0 4

https://github.com/xdmspec/xdm.org/raw/gh-pages/ExtensibleDeviceMetadataXDM_v1.02.pdf
http://creativecommons.org/licenses/by/4.0/

Overview
Preface

Augmented reality (AR) and depth photos are increasingly popular camera use cases across
Android, however the OS lacks standardization in capturing, saving, and sharing such images.

A few independent solutions, primarily for depth photos, exist however none that extend across the
ecosystem. By having uniformity and consistency within the Android camera framework, partners
and developers can natively get support for Dynamic Depth with minimal effort.

Objective
Provide an easy to implement, quick to parse, and widely available depth extension to existing still

imaging formats across Android and iOS.

The extension will support two primary cases, augmented reality and depth photos. By storing
device-related metadata, this specification will extend common still imaging specs like JPEG, PNG,
and HEIF while maintaining compatibility with existing image viewers.

Target audience

The primary audience for this document are engineers and product managers across:
A. device makers

image creation applications

image editing applications

image sharing applications

mobile chipset makers

mobile chipset solution providers

MmO O W

This is not an end-user facing specification nor does it contain end-user specific marketing
material.

Use cases

Dynamic Depth is extensible to multiple types of depth use cases, optimizes for multi-camera
sensors, and provides a foundation for computer vision/image processing extensions. The first two
usages targeted are AR and depth photos.

Augmented Reality (AR) photos

In 2017 AR Stickers were introduced where a digital object (AR content) is placed into the scene
currently viewed by the camera. An example of this is shown below with several objects being
placed within a living room.

Dynamic Depth 1.0 5

AR Sticker

In the scene above the AR content is placed while the viewfinder is active and capturing the scene.
With Dynamic Depth a user would capture a scene, say the hallway shown above, and place AR
content within the scene post-capture.

Depth photos
Depth photos can have various forms, some of the most popular ones include portrait mode found

on many popular Android phones. An example of such an image is below:

Dynamic Depth 1.0 6

Photo without (left) and with (right) depth of field effect.
Note how the effect’s synthetic shallow depth of field helps suppress the cluttered
background and focus attention on the main subject.

Today images like above cannot be edited once created. Starting with Dynamic Depth applications
can seamlessly create bokeh effects post-capture.

These depth photos contain a depthmap which is defined as an image of values (integer or real)
that represent distance from the view point (see example below). The exact definition of depth can
vary depending on the depth sensor. As an example, two common definitions are depth along the
optical axis (typically the z-axis), and depth along the optic ray passing through each pixel.

Dynamic Depth 1.0 7

https://photos.google.com/share/AF1QipOL9dKbOVIa1j29zCUBSqcq2vlr40psJYVVg7byQOGO3G0-jIv_WU_7l-ubR-YdEA/photo/AF1QipNZbP_8K9OCVeWzc8B0aVLtmrVLRX7co4WbTjDS?key=WU92MHFnb05yMEhtQWVlT1h1OFZvOUJuQ2pxbHJn
https://photos.google.com/share/AF1QipOL9dKbOVIa1j29zCUBSqcq2vlr40psJYVVg7byQOGO3G0-jIv_WU_7l-ubR-YdEA/photo/AF1QipM8Dg23FNoS4FMve6LqLCAj0wdnXt17HwkBcLDu?key=WU92MHFnb05yMEhtQWVlT1h1OFZvOUJuQ2pxbHJn

An example color image (left) and a corresponding depthmap (right).

Dynamic Depth 1.0 8

Normative References
The following are normative references for this specification:

Adobe XMP Specification Part 3 Storage in Files
ISO 16684-1:2011(E) XMP Specification Part 1
ISO/IEC 14496-12 ISO Box media file format

T.81 (09/92) Digital Compression and Coding of Continuous-tone Still Images

XML Schema Part 2: Datatypes Second Edition W3C Recommendation 28 October 2004

Data Structure

The metadata is serialized following ISO 16684-1:2011(E) XMP_Specification Part 1 and embedded
inside the primary image file as described in Adobe XMP _Specification Part 3 Storage in Files.
The primary image file contains the following items, formatted as RDF/XML.

Elements

The root metadata object is the Device element and it is always required. This specification
supports several Profiles or use cases and each has its own set of required elements and data.
Readers may use Profiles to identify what use cases a given Dynamic Depth file can support.
Multiple profiles can be supported by a single file. Readers and writers are not required to support
all profiles.

The following table lists the minimum set of elements that are required for each Profile in this
specification.

Profile Required Elements
AR Photo e Device
o Profile - must be “ARPhoto”
o Planes
e Camera
o Pose
o LightEstimate
o ImagingModel
o Image (optional, see the AR Photo Profile for more info)
o DepthMap (optional)
Depth Photo e Device
o Profile - must be “DepthPhoto”
e Camera
o DepthMap
o Image

Dynamic Depth 1.0 9

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart3.pdf
http://en.wikipedia.org/wiki/RDF/XML

Optional elements are listed in the following list and may be ignored by image parsers that handle
either of the Profiles above. Elements are defined in a separate section.

e Primary image - The image external to the Dynamic Depth, visible to normal non-Dynamic
Depth apps
e Device - The root object of the RDF/XML document as in the Adobe XMP standard
Container - Ordered directory of concatenated files in the file container
VendorInfo - Vendor-related information for the device.
AppInfo - Application-specific or rendering information for the device.
EarthPose - The pose of the Realm (i.e. local world space) with respect to the
earth.
Pose - The pose of the device with respect to the Realm.
Profiles - RDF sequence of one or more Profile entities
m Profile - Defines the intended usage(s) of the Dynamic Depth metadata
with the primary image.
o Cameras - RDF sequence of one or more Camera entities
m Camera - All the info for a given camera. There must be a camera for any
image. The primary image is associated with the first camera, which is
considered the primary camera for the image.
e VendorInfo - Vendor-related information for the camera.
e AppInfo - Application-specific or rendering information for the
camera.
Pose - Camera pose relative to the Realm.
Image - Image provided by the camera
ImagingModel - Imaging (lens) model.
DepthMap - Depth-related information and the depth map.
e PointCloud - Point-cloud data.
o Planes - RDF sequence of one or more Plane entities
m Plane - All the info for a given physical planar surface..

o

O

o

Media Data Encoding

Dynamic Depth files consist of a primary display-ready image, such as a JPEG file. Secondary
images such as depth data, intermediate images, or alternative representations of the primary
image, may be stored either in a concatenated file container defined below, or if the primary image
is an ISO/IEC 14496-12 ISO Box media file format container, as other boxes in the container.

Concatenated File Container

The concatenated file container consists of a composite file where the primary image file has zero
or more secondary media files appended to it. The secondary media files may contain alternative
representations of the primary image or related media such as depth data.

The primary image contains a Container XMP metadata directory defining the order and properties
of subsequent media files in the file container. Each file in the container has a corresponding media
item in the directory. The media item describes the location in the file container and the basic

Dynamic Depth 1.0 10

properties of each concatenated file. Media items in the container directory are referred to by
IltemURI attributes from Image or Depth Map elements in the metadata.

ISO Box Media File Format Container

File containers based on ISO/IEC 14496-12 may be used to store the primary image, depth data,
intermediate images, or alternative representations of the primary image. The XMP metadata in the
container includes a Container XMP metadata directory element where each item in the directory
uses a URI to refer to boxes within the ISO/IEC 14496-12 container.

Namespace Requirements

When Dynamic Depth is encoded in a JPEG container, all namespace declarations must appear in
the main XMP section of the first 64K of the extended section. This allows clients to quickly create
a list of the required namespaces by reading just those two sections (less than 128K), without
having to load and parse the entire extended section.

Informative: If a Reader does not support all Dynamic Depth features for a particular application, it
may be helpful for the reader to efficiently obtain a list of the Dynamic Depth namespaces (i.e.,
features and feature versions) used in a file before they begin processing it. Unfortunately, this can
be difficult when using a JPEG container. If the Device element is more than 64K (true of most
Dynamic Depth files), the rules of XMP force the Device and its children out of the main XMP
section and into the extended section. Thus an Dynamic Depth element and its namespace
declaration might appear anywhere in the main or extended XMP. Under these conditions, building
a list of all the Dynamic Depth namespaces used in a file requires checking the entire Dynamic
Depth content, often megabytes in length, causing a performance hit when opening the file.

Non-standard Usage

Writers are allowed to include other fields or objects that are not defined in the spec for the
specified version of Dynamic Depth in Device elements. For example, these may be objects
specific to a particular vendor, device, or use-case, or other extensions. Additions to the Device
element must not change the behavior defined by the Dynamic Depth version value included in
each element’'s namespace. Readers should ignore any additions that appear, without error.

Compatibility

The Dynamic Depth specification is a significant expansion of the original DepthMap Metadata
specification published in 2014. It still supports the original use case of a single-image container
with associated depth metadata, but expands that original specification to support more types of
metadata and more use cases. The two specifications are not backwards compatible because
depth media data is stored in a different way in this specification.

Readers and writers that supported the DepthMap Metadata spec will require modification to
support Dynamic Depth. The Dynamic Depth standard handles a number of items differently,
including: Units, Confidence, Manufacturer, Model, ImageWidth, and ImageHeight.

Dynamic Depth 1.0 11

https://developers.google.com/depthmap-metadata/

In this documentation, JPEG is used as the basic model, but the metadata definition may be
applied to other file formats that support XMP.

Profiles

Profile elements describe the intended use of a Dynamic Depth image and define the structure of
other required elements in the metadata. Profile elements allow Readers to quickly identify the
intended use of a file. The Profile element contains the profile name and the indices of cameras
used by the profile. Currently-supported use cases are depth photos and augmented reality (AR)
photos.

The required Dynamic Depth elements for each profile are outlined below.

Profile and Use Case Extension

Future versions of the Dynamic Depth specification may add new Profiles to support new
functionality and use cases. First, they can define the required Dynamic Depth elements, values,
and semantics similar to the Depth Photo and AR Photo sections below. Next, their image reader
and writer could support their use case name in the Profile:Type field, the list of Camera indices
in Profile:Cameralndices.

Profile: Depth Photo

Depth photos are defined as an image of scalar values (integer or real) that represent the distance
from the camera viewpoint, to the object viewed in a corresponding color image, see the figure
below. The exact definition of the depth value may vary based on the type of depth sensor. As an
example, two common definitions are depth along the optical axis (typically the z-axis), and depth
along the optical ray passing through each pixel.

F &
An example color image (left) and a corresponding depth image (right).

Dynamic Depth 1.0 12

Required Depth Photo Elements

Profile
e Profile:Type must be set to DepthPhoto.
e Profile:Cameralndices. This list must have only one integer i, which represents the ith
camera in the Device:Cameras list.

Cameras
e Camerai
o DepthMap (1 or more)
o Image (1 or more)

Device

Profile (Type “DepthPhoto”,
Cameralndices = i)

r '~.

Cameras

Camera i

Original
Sharp
Image

Depth
map

e e — — — — — — — — — — — — — — — — —

Container image

M .
Dynamic Depth metadata structure for depth photography

Primary image
In depth photography, the primary image is the presentation or display-ready copy of the image.

The image is not required if the camera index is 0 and the image and primary image are identical.

Image and depth map correlation

All images and depth maps within a Camera must be rectified to the same pose and cropped to the
common field of view (same aspect ratio). It is not necessary for images and depth maps to have
the same resolution.

Dynamic Depth 1.0 13

Writers may store additional intermediate images inside subsequent Camera elements. Writers
may store additional Camera elements for other intermediate representations of the color and
depth images. Each additional Camera element may include a CameraPose element to define its
position and orientation.

Profile: Augmented Reality (AR) Photo

An augmented reality (AR) photo is an image that contains the pose of the capturing device,
lighting estimate information, horizontal and/or vertical surface planes in the world, and camera
intrinsics.

Optionally, developers may include application-specific metadata. One example is the identifier(s)
of 3D asset(s) and their poses. When the image is parsed, these assets can be loaded only by that
application, with their poses, so that end-users may edit and move the asset interactively in the
photo.

Optionally, a photo can be embedded inside an AR Photo. Should there be an embedded photo, it

should be the one used by the image viewer when parsing back the photo. An example use case is
yinwhere the embedded image is the one without 3D assets (which we will call the AR image), and
the container has the 3D assets visible (the end-user facing image). This enables users to preview
a thumbnail with the 3D assets in a gallery, while being able to interact and move objects in the AR
image. Developers may choose to update the primary image if end-users save their edits to the AR
photo.

If the embedded photo use case is employed, its parent Camera should be anything other than
Camera 0, and it should hold all the AR metadata. Otherwise, if there is no embedded image,
Camera 0 should contain all the AR metadata.

Dynamic Depth Elements

Required

Profile
e Profile:Type must be set to ARPhoto.
e Profile:Cameralndices. This list must have exactly one integer i, which represents the
ith camera in the Device:Cameras list.

Device
e Planes - a list of horizontal or vertical planes, representing detected physical surfaces in
the world (e.g. floors or walls)

Camera
e Camera i- holds the AR metadata, and optionally the embedded AR image.
o Pose
o LightEstimate
o ImagingModel - camera intrinsics information
o Image - optional, AR image for the embedded use case

Dynamic Depth 1.0 14

JPEG

¢ EXIF :.

I/ '.I
| XMP !
1 i
Vo ™
! | Device |
L. |
1)
' Profile (Type="ARPhota”, Cameralndices=0) '
i i
i " N i
| Planes |
: J |
o v
1 1
! Cameras !
| i
I Camera | i
1 1
i | CameraPose | | ImagingMadel i
1 1
1 1
' | LightEstimate | '
1 1
| ~ i
| i N i
| Vendorlnfo I
AL)

Container image

o /

Dynamic Depth metadata structure for an AR Photo without an embedded image.

Dynamic Depth 1.0 15

e
AR Photo JPEG -

—————————————————————————————————————

vy

Profile (Type="4RPhote”. Cameralndicas=0)

-

Flanes
s ;
Cameras / /
. e
Camera i
GContainer =
(o F
| Cameraose | URI for the AR Image
| LightEstimate | {3D asset can be
- lnaded at runtime via
[imagingModel | Renderinfo)
- !

I

Applnfo (App name, version, app data)

Vendorinfo

R e

Container image (regular photo) ({

Dynamic Depth metadata structure for an AR Photo with an embedded AR image.

Poses and Coordinate Systems

Dynamic Depth stores the pose (that is, the position and orientation) of the camera(s) relative to
the world, or the poses of objects (e.g. 3D assets) in the world. This enables applications to use
multiple images together, as when mapping depth data onto a photograph, and provides
information about the image capture, such as the position and orientation of the image sensor.

The following sections define the conventions, coordinate systems, and formats used throughout
this specification. Most of the math involved can be handled by third-party math libraries. More
details on additional coordinate systems, conventions, and math are available in the Appendix.

Dynamic Depth 1.0 16

https://en.wikipedia.org/wiki/Pose_(computer_vision)

Conventions

Handedness. Unless otherwise noted, all Cartesian spaces are right handed. This means that
cross(X, Y) == Z. Please see also the OpenGL section on handedness.

Position is expressed in three dimensions. For the device pose, these are latitude, longitude, and
altitude. For the camera pose, they are the distance in meters from the device origin point along
the device's x, y, and z axes.

Orientation is also expressed in three dimensions, as a rotation around x, y, and z axes relative to
a frame of reference. For each Dynamic Depth element, the frame of reference is the local world
coordinate system, which we define and describe below as the Realm coordinate system in this
specification. For the Realm itself, the frame of reference is a standard "ENU" (east-north-up) earth
coordinate system, described below.

Each of these 3D coordinate systems has a defined origin from which x, y, and z axes emerge in
defined directions.

Dynamic Depth Pose. Dynamic Depth stores elements’ Poses with respect to the local world
coordinate system, which we define in this specification as the Realm coordinate system. The
exception is EarthPose, which is the GPS reading of the Android device.

Note that some elements’ pointwise locations are stored with respect to their local object
coordinate system, such as with P1lane:Boundary.

Below are the two major coordinate systems used in this specification. More details on the
remainder are in the Appendix.

Earth Coordinate System

Dynamic Depth uses a right-handed, east-north-up (ENU) world
coordinate system. This is the same world coordinate system used in the
Android and iOS operating systems, and in ARCore.

The 3D position is represented in WGS84 coordinates as longitude, X
latitude, and altitude. In keeping with the WGS84 documentation, altitude <
is height in meters above the standard ellipsoid reference surface, and /I/

latitude is geodetic latitude. This is consistent with the GPS data provided
by most mobile devices.

Z

World coordinate systern

Origin The location specified by latitude, longitude, and altitude.

Orientation e X s tangential to the ground at that location and points roughly East.
(It is the vector cross producty x z.)

e Y is tangential to the ground at that location and points towards the
North Pole.

Dynamic Depth 1.0 17

https://www.khronos.org/opengl/wiki/Coordinate_Transformations#Handedness_Of_Coordinate_Systems
https://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Geodetic_datum#Local_east.2C_north.2C_up_.2%208ENU.29_coordinates
http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[],%20float[],%20float[],%20float[])
https://en.wikipedia.org/wiki/IOS
https://developers.google.com/ar/reference/java/com/google/ar/core/Pose#world-coordinate-space
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://en.wikipedia.org/wiki/Geodetic_datum#Geodetic_versus_geocentric_latitude

e Zis perpendicular to the ground at that location and points towards the

sky.
Units Meters or degrees
Handedness | Right
Range e Latitude: -90° to +90°

e Longitude: -180° to +180°
e Altitude: 0 to 100,000 meters (the edge of the atmosphere).

Precision Double

Realm Coordinate System

The Realm coordinate system is an application’s reference coordinate system in a real world. It is
equivalent to ARCore’s Session space, which serves as the reference space for all of the poses
provided by its API.

Informational: The term “Realm” refers to this coordinate system, as to ensure clarity between this
one and “Earth” space.

Origin Arbitrary, depends on the application.
e Forrendering applications, see the origin of OpenGL’s rendering
world space.

e For ARCore, it is generally the point in the real world when the user
starts running the AR application.

Orientation Local level with

e Yup

e Arbitrary X/Z axes, but generally -Z = projection of the device’s
“forward” vector at start-up time into the local-level plane.

Note: “Forward” refers to the direction that a user is facing when they
start the app with their device held out in front of them at arm’s length,
arm parallel to the ground.

Units Meters

Handedness Right

Range Unbounded

Precision Single

Dynamic Depth 1.0 18

https://learnopengl.com/Getting-started/Coordinate-Systems#World%20space
https://developers.google.com/ar/reference/c/group/concepts#poses-and-coordinate-spaces

Object Coordinate System

This coordinate system is used for a Plane’s points, and aligns with the Anchor coordinate system
defined in ARCore. If applications choose to store serialized poses in AppInfo, it is recommended
that they use this coordinate system as those objects’ respective frames of reference.

The following definitions are recommended, but applications can choose to use the values that
work best for their use case.

Origin The center of the object on the XZ plane, and the bottom-most Y point on the
object.

Orientation +Xright, +Y up, +Z out of the object, when looking head-on at the object.

Units Meters

Handedness | Right-handed

Range Depend on the use case

Precision Single

Orientation data format

Mathematically, the task of describing orientation or rotation can be difficult and counterintuitive.
Each of the popular formalisms for this — rotation matrix, Euler angles, axis-angle representation,
and quaternions — has advantages and disadvantages. Dynamic Depth uses the guaternion
representation, which is used throughout Android and ARCore APls.

Informational: Readers can use library functions to convert it to matrices for calculations, if desired.

Transform Naming Conventions

Transformations are always named in the following form: <space_a> T <space_b> (with
camel-casing for functions). For instance, this transform can map a point from the coordinate
space_b into space_a coordinates. The “T” stands for “transformation” and should be pronounced
“T” and not “to” to avoid confusion.

This naming makes it easy to see visually at a glance that the math is correct simply from the
ordering of the space names. In the equation below the two “device” terms are adjacent to each
other, and the order of “realm” and “camera” is preserved on both sides of the equation.

Recall that poses are just another name for rigid transformations. Since they are both abstract
concepts and not implementations, we do not distinguish between poses and matrices where
possible.

Dynamic Depth 1.0 19

https://developers.google.com/ar/reference/java/com/google/ar/core/Anchor
https://en.wikipedia.org/wiki/Quaternion

Example
e Camera poses are equivalent to realm_T_camera, which represents the pose of the
camera in the Realm coordinate space.

e Coordinate system change. Inverse has the same semantics as an inverse matrix.

camera_T_realm

Inverse(realm_T_camera)

camera_T_plane = camera_T_realm * realm_T_plane;

e Linear point mapping: foo_T_bar * bar_p, where the point bar_p is transformed from
frame bar to foo with a right sided vector multiplication (using homogeneous coordinates).

Dynamic Depth 1.0 20

Element Definitions
This section defines and provides details of each Dynamic Depth element.

Device

The Device element contains information about the capture device and contains a sequence of
Camera elements related to the primary image.

e The namespace URIlis http://ns.google.com/photos/dd/1.8/device.
e The default namespace prefix is Device.

The first camera in the sequence is the one that created the primary image in the file container. At
least one Camera element must be present in the Cameras element for a Device to be valid.

Default If Container
Name Type Required Property Content Image
Value e
Modified
Profiles Sequence No N/A Describes the intended purpose(s) of the No change
of Profile image and its metadata. If the fields for
(rdf:Seq) more than one use case are present, all
the applicable profiles should be listed.
Cameras Sequence Yes. Quantity N/A Each Camera in the Cameras sequence Needs
of Camera depends on contains the properties of a camera on the | update
(rdf:Seq) Profile device associated with this JPEG. If the
first Camera in the sequence does not
contain an Image, it references the
primary image.
Container Container Yes, if Image or | N/A Lists the directory of media items in all the | No change
DepthMap Camera items under the Cameras
elements are element.
present in any
Camera
element
Planes Sequence Depends on N/A Each Plane in the Planes sequence No change
of Plane Profile contains the properties of a vertical or
(rdf:Seq) horizontal plane in the world, such as a
wall or floor surface.
EarthPose EarthPose | No The pose of the Realm, with respect to No change
the Earth. Please see the description in
the Poses and Coordinate Systems
section.
Pose Pose No The pose of the Device, with respect to
the Realm. Please see the description in
the Poses and Coordinate Systems
section.
VendorInfo Vendorinfo | No Vendor information for the device No change
Applnfo Applnfo No Application information for this device
Dynamic Depth 1.0 21

Container Element

The container element is encoded into the XMP metadata of the primary image and defines the
directory of media items in the container. Media items must be located in the container file in the
same order as the media item elements in the directory and must be tightly packed.

e The namespace URIlis http://ns.google.com/photos/dd/1.8/container.
e The default namespace prefix is Container.

The directory may contain only one primary image item and it must be the first item in the directory.

Element Name Type Description

Directory Ordered Array | Ordered array of Container:ltem structures defining the layout
of Structures | and contents of the container.

Item Element
Media item elements describe how each item should be used by the application.

The first media item must be the primary image. The primary image is usually the container image,
in which case the required field is the MIME type. The Length field must be zero for this case.

In general, an Item must contain a Mime attribute specifying one of the image MIME types listed in
Iltem MIME Type Values. The length of the primary item may be determined by parsing the primary
image based on its MIME type starting at the beginning of the file container.

The first media item may contain an Padding attribute specifying additional padding between the
end of encoded primary image and the beginning of the first secondary image. Subsequent media
items for secondary images may not contain Padding attributes.

Each media item must contain an Mime attribute. The secondary media items must also contain
Length attributes.

Sequential media items may share resource data within the file container. The first media item
determines the location of the resource in the file container, and subsequent shared media items
have Length set to 0. In the case that the resource data is itself a container, DataURI may be used
to determine the location of the media item data within the resource.

The location of media item resources in the container is determined by summing the Length’s of
the preceding secondary item resources to the length of the primary image encoding plus Padding
if specified.

Dynamic Depth 1.0 22

Attribute Name

Type

Description

Mime

String

Required. Simple string indicating the MIME type of the
media item in the container.

Length

Integer

Required for secondary media items. Simple string
containing a positive integer length in bytes of the item.
Media items are expected to be in their original form, with
no encoding applied. The length value is the actual length
of the bytes in the file.

Length 0 in secondary media items indicates that the
media item resource is shared with the previous media
item. Length is expected to be 0 in a primary media item.

Padding

Integer

Optional for the primary media item. Simple string
containing a positive integer length in bytes of additional
padding between the end of encoded primary image and
the beginning of the first secondary image.

DataURI

String

Required if there is an element that references this
Container, such as Image, Depth Map, or AppInfo.
Applications should choose a URI that makes it easy for
readers to identify that the associated item belongs to the
application. Directory paths are a good example of a
DataURI’s ideal structure.

Otherwise, optional for ISO base media format ISO/IEC
14496-12 mime types. URI string conforming to ISO/IEC
14496-12 8.11.9 containing the relative URI of the media
data inside the media item resource.

Item Mime Type Values
The ItemMime attribute defines the MIME type of each media item.

Value Description

imagel/jpeg JPEG Image
image/png PNG Image

image/tiff TIFF compatible image
image/heif, image/heic HEIF image

text/plain Text data

Dynamic Depth 1.0

23

Profile

The Profile element describes the use case of the photo being captured.
e The namespace URIlis http://ns.google.com/photos/dd/1.08/profile.

e The default namespace prefix is Profile.

Camera indices here are
independent of indices defined or
mandated by Android camera
framework.

. Default If Container
Name Type Required Value Property Content Image Modified
Type string Yes DepthPhoto, ARPhoto No change
Cameralndices | Sequence | Depends on N/A Indicates the cameras that will be No change
of integers | the use case used in the profile. See the
(rdf:Seq) as defined in respective profile description for
the Profile the intended use of each camera.

Dynamic Depth 1.0

24

Vendor Information
The VendorInfo element describes vendor information for a camera or a device.
e The namespace URIlis http://ns.google.com/photos/dd/1.8/vendorinfo.
e The default namespace prefix is VendorInfo.

. Default If Container
Name Type Required Value Property Content Image Modified
Model string No The model of the element that No change
created the content
Manufacturer | string Yes N/A The manufacturer of the element that | No change
created the content
Notes string No General comments No change

Dynamic Depth 1.0

25

Application Information

The AppInfo element describes application-specific information for the given image. Example use
cases include a projection mesh of the primary image, or 3D assets’ identifiers and their poses.

Possible ways of serializing this data include a little-endian base64-encoded string, or using

JavaScript Object Notation. This data would then be stored in a Container with a text mime type.

The flexibility of custom serialization mechanisms aim to enable experimentation and/or

maintaining per-application use of this data, to name a few use cases. Applications are expected to

define their own mechanisms for parsing this data as well.

e The namespace URIlis http://ns.google.com/photos/dd/1.8/appinfo.
e The default namespace prefix is AppInfo.

. Default If Container
Name Type Required Value Property Content Image Modified
Application string Yes N/A The model of the element that No change
created the content
Version string Yes. N/A The version of this application’s | No change
Otherwise data serialization scheme.
the ltemURI
value must
be present.
ltemURI string Yes. The URI of the Container that No change
Otherwise holds the custom data used by
Version must this application.
be present Image readers who do not
recognize the application name
should not attempt to read the
associated Container.

Dynamic Depth 1.0

26

https://www.json.org/

Earth Pose

The EarthPose element describes a pose (i.e., position and orientation) with respect to the Earth
coordinate system. In Dynamic Depth, this is used for describing the pose of the Realm with
respect to the Earth in Device:RealmPose. Please see the Poses and Coordinate Systems section
for details on how the Earth, Realm, Device, Camera, and Entity coordinate systems work together.

e The namespace URIlis http://ns.google.com/photos/dd/1.08/earthpose.
e The default namespace prefix is EarthPose.

The raw data used to determine the Realm’s pose (with respect to the Earth) may come from GPS
and IMU sensors. In most cases, this is equivalent to the GPS reading. When providing the
position, all three of the position fields are required, and when providing the orientation, all four
orientation fields are required.

Position data shows the Realm’s location on the Earth. Rotation (orientation) data shows the
containing entity’s orientation relative to the ENU world coordinate system, in the quaternion format
as described under Poses and Coordinate Systems.

. If Container
Name Type Required Property Content Image Modified
Latitude double Yes, if WGS84 latitude in degrees No change
providing
position.
Longitude double Yes, if WGS84 longitude in degrees No change
providing
position.
Altitude double Yes, if WGS84 altitude in meters No change
providing
position.
RotationX real Yes, if The x component of the quaternion No change
providing representation.
orientation.
RotationY real Yes, if The y component of the quaternion No change
providing representation.
orientation.
RotationZ real Yes, if The z component of the quaternion No change
providing representation.
orientation.
RotationW real Yes, if The w component of the quaternion No change
providing representation.
orientation.
Timestamp long Depends on Time of capture, in milliseconds since the Epoch | No change
use case (January 1 1970, 00:00:00.000 UTC).

Dynamic Depth 1.0 27

https://en.wikipedia.org/wiki/Pose_(computer_vision)
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion

Pose

The Pose element describes the pose (i.e., position and orientation) of its container element with
respect to the Realm. Please see the Poses and Coordinate Systems section for details on how
the Earth, Realm, Device, Camera, and Entity coordinate systems work together.

e The namespace URIl is http://ns.google.com/photos/dd/1.0/pose.
e The default namespace prefix is Pose.

The position and orientation of the device, each camera, and each plane relative to the Realm are
based on information provided by the manufacturer, Android APIs, or AR APlIs. Image-creation
apps need this information in order to create the Dynamic Depth file. Image consumers do not
need this information; they just need the pose data.

If it is not possible to know the device pose relative to the Realm, it is assumed to have the same
pose as that of Camera 0, which is the primary camera. Both are assumed to have the same pose,
and the DevicePose is set to identity (no difference).

For non-AR use cases, the pose of the device (with respect to the Realm) is the zero pose (i.e.
identity matrix), and this field will not be needed.

Pose is also used in an Entity context when describing the pose of a Plane. Applications may also
choose to adopt this usage convention for customized use cases, such as encoding 3D assets and
their poses in the Appinfo Element.

Position data shows the X, y, z coordinates of the center of the device, plane, or camera lens with
respect to the Realm, in meters where possible. Rotation (orientation) data shows the device,
plane, or camera orientation relative to the Realm, in quaternion format as described under Poses
and Coordinate Systems.

The table below shows the components of the Pose element.

. Default If Container
Name Type | Required Value Property Content Image Modified
PositionX real Yes, if 0 The x position in meters, relative to the No change
providing Realm.
position.
PositionY real Yes, if 0 The y position in meters, relative to the No change
providing Realm.
position.
PositionZ real Yes, if 0 The z position in meters, relative to the No change
providing Realm
position.

Dynamic Depth 1.0 28

https://en.wikipedia.org/wiki/Pose_(computer_vision)
https://en.wikipedia.org/wiki/Quaternion

RotationX real Yes, if The x component of the quaternion No change
providing representation.
orientation.
RotationY real Yes, if The y component of the quaternion No change
providing representation.
orientation.
RotationZ real Yes, if The z component of the quaternion No change
providing representation.
orientation.
RotationW real Yes, if The w component of the quaternion No change
providing representation.
orientation.
Timestamp long Yes Time of capture, in milliseconds since the No change
Epoch (January 1 1970, 00:00:00.000
UTC).

Dynamic Depth 1.0

29

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion

Camera

The Camera element describes a camera imaging sensor, and must reference an image. This
image may be a Container URI, or the primary image if the given camera is the first one in the
Cameras list (i.e. Camera 0).

e The namespace URIlis http://ns.google.com/photos/dd/1.08/camera.
e The default namespace prefix is Camera.

The first Camera that appears in the data structure is referred to in this documentation as Camera
0. In a simple case (e.g., a smartphone or tablet), Camera 0 should be the primary camera, and
may reference the primary image; the rest of the Camera sequence is arbitrary. The semantics of
each camera are defined by the Profiles and specified use cases; please see the Profiles section
for a detailed description.

All images and depth maps within a single Camera element are presumed to be rectified that same
Camera. That is, the elements have the same pose, proportions, and field of view. Any additional
Camera element should either include accurate pose data for that camera relative to the Realm.

. Default If Container
Name Type Required v Property Content Image
alue e
Modified
Trait string Depends “Physical” | One of “Logical” or “Physical” to | No change
on Profile indicate the nature of this
camera. Assumed Physical if
this field is not present.
DepthMap DepthMap Depends The DepthMap property of this If image
on Profile Camera scaled or
cropped,
update
accordingly
Image Image Yes The Image property of this If image
Camera scaled or
cropped,
update
accordingly
PointCloud PointCloud Depends The PointCloud property of If image
on Profile this Camera scaled or
cropped,
update
accordingly
ImagingModel ImagingModel Depends The imaging model of this If image
on Profile Camera. scaled or
cropped,
update
accordingly

Dynamic Depth 1.0 30

Pose Pose Depends The pose of this Camera. The No Change

on Profile poses of Camera elements are
all relative to the Realm.

LightEstimate LightEstimate Depends The lighting estimation data of No change
on Profile this Camera.

VendorInfo VendorInfo Depends Vendor info for this camera No change
on Profile

Applnfo Applnfo Depends Application-specific data for this | Depends on
on Profile camera use case

Dynamic Depth 1.0

31

Image
The Image element contains a reference to a color image stored elsewhere in the file container.

e The namespace URIl is http://ns.google.com/photos/dd/1.08/image.
e The default namespace prefix is Image.

. Default If Container

Name Type Required Value Property Content Image Modified
ltemSemantic | string Yes. N/A A defined ltemSemantic No change.

value, which describes the

intended use or contents of

the image. See table below.
ltemURI string Yes N/A The URI of the Container for No change.

this camera’s image.

Informative: One use of the Image element is described under Profile: Depth Photo, in which a
backup of the original image is stored along with the matching depth data in the Camera 0 Image,
and the primary image is treated as a "presentation” or "display" copy.

For other uses, such as storing an infrared photograph to accompany a normal color photograph,
it's better to put the Image in a separate Camera. It's likely that this approach will correspond to the
actual equipment — for instance, an infrared image is taken by a separate IR camera on the same
device. The additional Camera element should either include accurate pose data for that camera
relative to the device, or have no pose data, indicating that the image has already been rectified to
the Camera 0 image.

ItemSemantic

The Image:ItemSemantic attribute defines the intended use of each image captured by a
Camera. In addition to the Depth semantic defining the container element storing the depth map
data, the following item semantics may be used:

Value Description

Primary Indicates that the item is the primary display ready image in the container. The container may
have only one Primary item.

Original Indicates that the media item is an original version of the primary image, such as an unfiltered
color image that may be used to render a depth effect.

Dynamic Depth 1.0 32

Light Estimate
The LightEstimate element provides the color correction RGB values and average intensity of a
real-world scene, as seen by an image sensor.

e The namespace URIlis http://ns.google.com/photos/dd/1.08/1lightestimate.
e The default namespace prefix is LightEstimate.

Informative: This data can be obtained using the ARCore APIs. These values are conventionally
used for adjusting the color of virtual objects when they are rendered in an image, such as in
OpenGL fragment shaders.

. If Container

Name Type Required Default Value Property Content Image Modified

ColorCorrectionR float Yes,ifGor | 1.0 The red color correction Scale/crop: No
B are scaling factor to be applied | change
present. to the final color computed
Optional by the fragment shader to
otherwise. match the ambient color.

ColorCorrectionG float Yes, ifRor | 1.0 The green color correction | Scale/crop: No
B are scaling factor to be applied | change
present. to the final color computed
Optional by the fragment shader to
otherwise. match the ambient color.

ColorCorrectionB float Yes,if Ror | 1.0 The blue color correction Scale/crop: No
G are scaling factor to be applied | change
present. to the final color computed
Optional by the fragment shader to
otherwise. match the ambient color.

Pixellntensity float Yes 1.0 The average pixel intensity | No change.

of the image sensor.

Dynamic Depth 1.0 33

https://developers.google.com/ar/reference/java/com/google/ar/core/LightEstimate
https://www.khronos.org/opengl/wiki/Fragment_Shader

Plane

The Plane element describes a vertical or horizontal planar surface in the world.

e The namespace URIl is http://ns.google.com/photos/dd/1.8/plane.

e The default namespace prefix is Plane.

Informative: This data can be obtained using the ARCore APIs.

Default If Container
Name Type Required Property Content Image
Value ?
Modified
Pose Pose Yes N/A The pose of this Plane. No Change
ExtentX float Optional -1 The extent of the plane in the X No change
dimension, centered on the plane
position.
ExtentZ float Optional -1 The extent of the plane in the Z No change
dimension, centered on the plane
position.
BoundaryVertexCount | Integer | Yes, if 0 The number of vertices in the No change
(even) providing enclosing boundary polygon.
Boundary
Boundary string Yes, if N/A A little-endian base64-encoded No change
providing list of (float) vertex pairs,
BoundaryVe representing the enclosing
rtexCount polygon vertices on the XZ plane.
These points are in the Plane’s
local coordinate system. Please
see the definition of the Object
Coordinate System in this
specification.
Dynamic Depth 1.0 34

https://developers.google.com/ar/reference/java/com/google/ar/core/Plane

Imaging Model

The ImagingModel element describes the imaging model of a camera lens.
e The namespace URIlis http://ns.google.com/photos/dd/1.08/imagingmodel.
e The default namespace prefix is ImagingModel.

The imaging model can be used to describe a fisheye distortion model, or a standard pinhole
camera model with 5-DoF radial distortion.

Skew is the clockwise angle by which the y axis of the image slants away from the vertical.

Y|/ image

The pixel aspect ratio is the x/y ratio of pixel width to pixel height. If pixels are perfectly square,
the ratio is 1/1 = 1.0 (the default). In the image below, the ratio would be 5/6 = 0.83. When the
pixel aspect ratio is 1.0 (the default), this ImagingModel element describes a standard pinhole
camera model with 5-DoF radial distortion. In this model, skew is the clockwise angle by which the
y axis of the image slants away from the vertical.

=

G pixel

1

— 5 —

The lens distortion model supports the Brown-Conrady model. The Distortion field stores a list of
value pairs [k,, p;, K, P, ..., K., p,] and supports a variety of parameter configurations:

e For applications using LENS_RADIAL_DISTORTION, kappa_0 through kappa_3 maps to k,
through k,, while kappa_4 to kappa_5 maps to p, and p,. Note that p, and p, must be zero
in this case, so the stored values in Distortion are:

Ky, P1s Ky, P Ky P53 Ky, P,] = [kappa_0, kappa_4, kappa_1, kappa_5, kappa_2, 0, kappa_3,
0]

where the lens distortion correction equations are:

Xx_c = x_i * (kappa_@ + kappa_1 * r*2 + kappa_2 * r*4 + kappa_3 * r’6)
+ kappa_4 * (2 * x_i * y_i) + kappa_5 * (r*2 + 2 * x_i*2)

y_c = y_i x (kappa_0 + kappa_1 * r*2 + kappa_2 * r*4 + kappa_3 * r’6)

+ kappa_5 * (2 * x_i * y_i) + kappa_4 * (r*2 + 2 x y_ir2)

Dynamic Depth 1.0 35

http://www.cs.unc.edu/~marc/tutorial/node37.html
http://www.cs.unc.edu/~marc/tutorial/node37.html
http://www.cs.unc.edu/~marc/tutorial/node37.html
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#LENS_RADIAL_DISTORTION

e For applications using LENS_DISTORTION, kappa_1 through kappa_3 maps to k, through
k,, while kappa_4 to kappa_5 maps to p, and p,. Note that p, must be zero in this case, so

the stored values in Distortion are:

[k, Py, Ky, Py Ky, P53l =[1, kappa_4, kappa_1, kappa_5, kappa_2, 0, kappa_3, 0]

where the lens distortion correction equations are:

X

|

(@]
]

e For other parameter configurations of the Brown-Conrady model, such as the 2-polynomial

x_i * (1 + kappa_T
kappa_4 * (2 * x_i
y_i * (1 + kappa_1
kappa_5 * (2 * x_i

rr2 + kappa_2 * r*4 + kappa_3 * r*6) +

rr2 + kappa_2 * r*4 + kappa_3 * r*6) +

*
* y_i) + kappa_5 * (r*2 + 2 *x x_i*2)
*
*

y_i) + kappa_4 * (r*2 + 2 x y_i*r2)

[k1, k2] or 3-polynomial [k1, k2, k3], zeroes must be the value for any p, parameter that is

not used.
Default If Container

Name Type Required V Property Content Image

alue e
Modified

FocalLengthX real Yes N/A The focal length of the lens along the X If image
axis, normalized by the maximum cropped,
dimension of the sensor. l.e., given the update
focal length in pixels f, and the size of the | accordingly
sensor in pixels (width, height), then:

FocalLengthX = f./ max(width, height)

FocalLengthY real Yes N/A The focal length of the lens along the Y If image
axis, normalized by the maximum resized or
dimension of the sensor. l.e., given the cropped,
focal length in pixels f, and the size of the | update
sensor in pixels (width, height), then: accordingly
FocalLengthY = f,/ max(width, height)

PrincipalPointX real No 0.5 The x position indicating where the If image
camera optical axis crosses the image resized or
plane center of the camera along the X cropped,
axis, normalized by the sensor width. update

accordingly

PrincipalPointY real No 0.5 The y position indicating where the If image
camera optical axis crosses the image resized or
plane center of the camera along the Y cropped,
axis, normalized by the sensor height. update

accordingly

ImageWidth integer Yes, if N/A The width of the image, in pixels. If image

ImageHei resized or

ghtis cropped,

present update
accordingly

Dynamic Depth 1.0

36

https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#LENS_DISTORTION

of Brown-Conrady distortion parameters
Ky, P1s Koy Py -+ Ky PR Where:

Ky, K,, ..., k, are radial distortion
coefficients, and

P, Py -, P, are tangential distortion
coefficients.

Please see the description above on
appropriate storage values.

ImageHeight integer Yes, if N/A The height of the image, in pixels. If image
ImageWid resized or
this cropped,
present update

accordingly

Skew real No 0 The skew of the image camera in

degrees

PixelAspectRatio real No 1.0 The aspect ratio of the X scale factor over

the Y scale factor (defined above).

DistortionCount integer Yes, if 0 The number of distortion parameter pairs
Distortion in the Distortion field. That is, the total
is present number of values in Distortion is twice

this number.
Distortion string Yes N/A Little-endian base64 serialization of a list

Dynamic Depth 1.0

37

http://en.wikipedia.org/wiki/Distortion_(optics)

Depth Map

The DepthMap element contains a depth map image and information about its creation and format.
e The namespace URIlis http://ns.google.com/photos/dd/1.8/depthmap.
e The default namespace prefix is DepthMap.

Depth maps are images of integer or real values that represent distance from the view point to a
viewed object. The definition of depth values can vary depending on the type of depth sensor. For
example two common definitions are depth along the optical axis (typically the Z axis), and depth
along the optical ray passing through each pixel. That is, the distance of an object from the plane
perpendicular to the Z axis, versus the distance from the object directly to the camera lens. The
MeasureType element specifies which definition is used.

Writers may store depth maps using only Camera 0, or may rectify images from additional cameras
before storing them (i.e., adjusting the depth data as if it had been captured at the pose of Camera
0, and cropping both images down to just the overlapping area). Writers may store the DepthMap
under Camera i (as defined in the respective Profile) along with the primary image.

Depth images for the first camera must have no holes. The writer must encode an estimated value
in any region where depth value cannot be calculated.

Depth Data
The depth map distance data is serialized into an image format and then stored as a separate item

in the file container. The encoding pipeline contains two steps:

1. Convert from the input format (e.g., float or int32 values) to an integer grayscale image
format as 16-bit words.

2. Compress using an image codec supported by the file container type.

> RangeLinear

Encoding
. JPEG, PNG,
Dep dtarc e S
compression

Rangelnverse
Encoding

—p

Informative: The pipeline can be lossless or lossy, depending on the number of bits of the original
depth map.

Two conversion formats are supported: RangeLinear and Rangelnverse. Rangelnverse is the
recommended format if the depth map will lose precision when encoded, such as when converting
from float to 16-bit. Rangelnverse allocates more bits to the near depth values and fewer bits to
the far values.

Dynamic Depth 1.0 38

https://en.wikipedia.org/wiki/Optical_axis
https://en.wikipedia.org/wiki/Optical_axis

Rangelinear
Let d be the depth distance value of a pixel, and near and far the minimum and maximum depth

values considered. The depth value is first normalized to the [0, 1] range as:

d — near

dn -

far —near
then quantize to 16 bits as:
dighic = - 65535
Conversely, given the quantized depth d,, one can recover depth d as:

d = d,-(far —near)+ near

Rangelnverse
Let d be the depth distance value of a pixel, and near and far the minimum and maximum depth

values considered. The depth value is first normalized to the [0, 1] range as:

far - (d — near)

d-(far — near)

dn. =

then quantize to 16 bits as:
digpir = - 65535 J
Conversely, given the normalized depth d,, one can recover depth d as:

B far -near

far —d, - (far — near)

FocalTable

Writers may optionally include metadata describing a lens focal model for the depth data. Readers
may use this to render a depth-of-field effect. The model defines the radius of the circle of
confusion at different distances from the viewer. Distance and radius pairs are used to construct a
lookup table defining the circle of confusion as a function of depth distance value.

Dynamic Depth 1.0 39

<Regr= =focal plane> Zfgre

The FocalTable attribute is a string value consisting of base-64 encoded little endian floating point
pairs, which are actual distance values, not 8 or 16 bit quantized and encoded values. These
<distance>, <radius> pairs define a lookup table that may be used to compute the radius of the
circle of confusion at distance values between the near and far values of the depth map. Pairs
must appear in ascending order sorted by the distance value. Distance coordinates are defined in
depth map distance value Units. Radius values are defined in pixel coordinates. Radius values
must be greater or equal to zero. The radius value zero denotes an in-focus depth distance on the
focal plane of the image.

The lookup table must contain at least two pairs for the near and far values of the depth map.
Radius values are linearly interpolated between points defined in the table.

Informative: Most applications require lookup table with three values for the near plane, focal plane
of the image, and the far plane. Objects at the focal plane depth value would be rendered in-focus.
Readers should accept focal tables with more than one distance value in focus.

Confidence Maps

The confidence values can be interpreted either directly as [0, 255] after de-compression or the
client should normalize to [0.0, 1.0f], where 0 means no confidence, 1.0 means 100% confidence,
and everything in between is a linear interpolation between 0% and 100%. These values have the
same semantics as the confidence definition in Android’s DEPTH16 format.

Confidence maps are not range-encoded or compressed, and near/far values are not to be used in
the maps.

Dynamic Depth 1.0 40

https://developer.android.com/reference/android/graphics/ImageFormat.html#DEPTH16

ItemSemantic

The DepthMap:ItemSemantic attribute defines the intended use of each depth map captured by a
Camera.The following item semantics may be used:

Value Description
Depth This field’s default value. Indicates that the depth image is intended to be used as a depth map.
Segmentation Indicates that the depth image is intended to be used as a segmentation mask.

Depth Map Definition

. If Container
Name Type Required | Default Value Property Content Image Modified
Format string Yes N/A The conversion format used Scale/crop: No
to encode depth: change
"Rangelnverse" or
"Rangelinear”
ltemSemantic string Yes Depth String value defined above No change.
describing the intended use
or contents of the depth
image. See table above.
Near real Yes N/A The near distance value of Scale/crop: No
the depth map. If “Units” is change
set to “Meters”, the units are
meters. Otherwise the units
are undefined.
Far real Yes N/A The far distance value of the Scale/crop: No
depth map. If “Units” is setto | change
“Meters”, the units are
meters. Otherwise the units
are undefined.
Units string Yes None The units of the depthmap, No change
i.e. "Meters" for meters,
“Diopters” for non-metrically
accurate data, or “None” for
no units.
DepthURI string Yes N/A The URI of the Container for Scale: No
the depth image. change as long
as aspect ratios
match.
Crop: Decode
data into an
image, crop to
matching ratio,
then re-encode.

Dynamic Depth 1.0

41

serialization of a list of x, y
floating-point pairs. The x
coordinate is the quantized
depth value and the y
coordinate is the radius of the
circle of confusion.

ConfidenceURI string No N/A The URI of the Container for Scale: No
the confidence map. The change as long
container item must support as aspect ratios
16 bit data. match.
Crop: Decode
data into an
image, crop to
matching ratio,
then re-encode.
MeasureType string No "OpticalAxis" The type of depth No change
measurement. Current valid
values are "OpticalAxis" and
"OpticRay". "OpticalAxis"
measures depth along the
optical axis of the camera,
i.e., the Z axis. "OpticRay"
measures depth along the
optic ray of a given pixel.
Software string No N/A The software that created this | No change
depth map
FocalTableEntr integer Yes if N/A The number of pairs (i.e. No change
yCount FocalTab entries) in FocalTable.
leis This value must be no less
present than 2.
FocalTable string No N/A Little-endian base64 Decode data

and update
radius
dimensions.

Dynamic Depth 1.0

42

https://en.wikipedia.org/wiki/Optical_axis
https://en.wikipedia.org/wiki/Optical_axis

Point Cloud
The PointCloud element contains properties that provide information regarding the creation and
storage of a point cloud.

e The namespace URIlis http://ns.google.com/photos/dd/1.08/pointcloud.

e The default namespace prefix is PointCloud.

Requir | Default If Container

Name Type | g Vel | 7 UCIRE (COnEm Image Modified

PointCount | integer Yes N/A Number of points (specified by x, y, z, No change
confidence 4-tuples) in the data

Points string Yes N/A Little-endian base64 serialization of a list of | No change
(x, Y, z, c) floating-point 4-tuples, where the
first three values are the point’s XYZ
coordinates in the Realm's coordinate
system, and the fourth value is the
confidence value. Points are in the order:
[X1,Y1,21,C1, X2,Y2,22,C2,..]

Please see the DEPTH_POINT_CLOUD
definition in Android’s ImageFormat.

Metric boolean | No Whether the Position values are expressed | No change
in meters. If set to false or not set, the
units are unknown (i.e., the point cloud is
defined up to a scale). If this value is not
set, then some cases (such as
measurement) will not be possible.

Dynamic Depth 1.0 43

Appendix

EXIF Consistency

The orientation and aspect ratios of the primary image and depth image will be consistent with the
values in the image’s EXIF tags, by definition of this specification. Here is a description of this
consistency.

The primary image, which is the Container image in most cases, will have the same orientation as
the value specified in the EXIF tags. Depth Photos, whose Camera elements do not contain a
CameraPose, must specify an Image element. If this Image element is the primary image (and is
therefore the Container image), the Depth image will by definition have the same orientation and
aspect ratio as the primary image. Otherwise, any other image must be locked to the Device’s
EarthPose (as the Pose will be zero by definition) and therefore will have the same orientation and
aspect ratio as the values in the EXIF tags. In this case, the Depth image will also have the same
values.

For 3D use cases such as AR Photos, the EXIF orientation is consistent with the CameraPose in
Camera 0, and would apply only to that primary image. For example, suppose that a device is
rotated horizontally when taking a photo. Then this orientation would be captured both by the
CameraPose, and by the “Horizontal” value in the EXIF orientation field. All other Camera elements
would have different CameraPoses, so their respective Image elements would not use the EXIF
orientation value, but would instead use the CameraPose specified in their respective parent
Camera elements.

Coordinate systems

Earth Coordinate System

Please see the Earth Coordinate System section above.

Realm Coordinate System

Please see the Realm Coordinate System section above.

Camera Coordinate System

The camera coordinate system is the same for all cameras, regardless of the device.

The pose of each camera specifies its position relative to the Realm origin, and its rotation relative
to the Realm coordinate system.

Information on camera positioning is available from the device manufacturer, or possibly in a
configuration file on the device. Android applications can obtain the camera pose with respect to
the Realm coordinate system (realm_T_camera) by doing the following:

Dynamic Depth 1.0 44

AR Applications
e The camera pose is provided by the API. This is Camera.getPose() in ARCore.

Android Applications, non-AR
e Obtain the camera pose (camera_T_device) with respect to the device coordinate system:
o Android P: Use LENS_POSE_ROTATION and LENS_POSE_TRANSLATION in
conjunction with LENS_POSE_REFERENCE
o Any API prior to P: Use LENS _POSE_ROTATION and
LENS POSE_TRANSLATION
e The concept of a device pose, with respect to the Realm coordinate system
(realm_T_device), does not apply for non-AR applications. As such, we can consider that
transformation matrix to be the identity matrix.
Consequently, realm_T_camera is equivalent to device_T_camera.

It may be tempting in a simple single-camera application to use zeroes for the camera positions,
implying that the camera is at the device origin. But obviously this would not work in an application
that uses multiple cameras, such as depth photography, especially if the image is captured at a
close distance (say, a few yards or less).

The following definitions are from the point of view where one is looking out from the camera into
the field of view.

Origin The center of the image sensor’s field of view

Orientation This is the same as the Android Sensor Coordinate System. The following
directions references a setting where the device is held in its native
orientation with the screen facing the user.

e Xs aligned with the horizon, with +X pointing to the user’s right hand
side.
Y is aligned with gravity, with +Y pointing towards the sky.
Z is perpendicular to the user and is parallel to the camera’s optical
axis, with +Z pointing towards the user.

Units Meters
Range Unbounded
Precision Single

Dynamic Depth 1.0 45

https://developers.google.com/ar/reference/java/com/google/ar/core/Camera#getPose()
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#LENS_POSE_ROTATION
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#LENS_POSE_TRANSLATION
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#LENS_POSE_REFERENCE
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#LENS_POSE_ROTATION
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#LENS_POSE_TRANSLATION
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-coords
https://en.wikipedia.org/wiki/Optical_axis
https://en.wikipedia.org/wiki/Optical_axis

Image Coordinate System

This coordinate system is used for the image itself, and it uses the *X
Android screen coordinate system. One example usage in this
specification is the principal point in PerspectiveModel.

Developers are responsible for transforming objects’ vertices into this Image Coordinate System
coordinate system for rendering purposes. Please refer to the OpenGL

conventions of model-view-projection (MVP) transformation. The Appendix has further examples
available to demonstrate how elements of this specification can be used
in parts of this MVP transformation process.

Device Orientations. The device rendering the image may rotate. As
such, the image’s coordinate system may need to rotate as well, i
depending on the application use case. Developers are responsible for
doing this transformation from the original to the new rotated coordinate
system. To describe this transformation, we first define two subcategories of the Image coordinate
system.

OpenGL Image Coordinates

Camera Image Coordinate System. This is used for images obtained directly from the camera,
with orientation defined by the pixel readout order from the camera sensor. Note that this is often
different from screen orientation.

Screen-Oriented Image Coordinate System. This is used for camera images that are rotated to
match the rotated device’s screen.

Screen Rotations. This section describes how to transform from the Camera Image Coordinate
System to the Screen-Oriented Image Coordinate System.

Rotate clockwise by Android Camera2 CameraCharacteristics. SENSOR_ORIENTATION +
Device quantized z rotation (around z-axis).

This means that if a phone is held vertically, and the SENSOR_ORIENTATION says "90", then the
Screen-Oriented Image Coordinate System is equal to the Camera Image Coordinate System
rotated clockwise by 90 degrees. If the phone is then 90 degrees clockwise so it's horizontal (and
the Ul is allowed to rotate to respect gravity), then the Screen-Oriented Image Coordinate System
is equal to the Camera Image Coordinate System rotated clockwise by 180 degrees.

Dynamic Depth 1.0 46

https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems

Image Coordinate System Definition. The following assumes a viewer’s perspective when facing
the image. That is, a person is looking head-on at the image.

Origin The upper left corner

Orientation e Xis aligned with the long side of the image, with +X going towards the
right hand side.

Y is aligned with the short side, with +Y going downwards.

Z is undefined in this 2D coordinate system.

Units Pixels

Handedness | Right-handed (recommended)

Range Unbounded

Precision Single

Object Coordinate System

Please see the Object Coordinate System section above.

Dynamic Depth Poses

All elements’ poses are with respect to the Realm coordinate system. The exception is
Device:RealmPose, which stores the Realm pose with respect to the Earth, Consequently,
transformations between arbitrary coordinate systems can be performed.

Here is an example of how to obtain the pose of camera i/ with respect to the coordinate system of
cameraj, ¢j_T_Cci.

ci T _realm = Inverse(realm T ci)

cj_T ci = cj_T_realm * realm_T_ci

Below are the definitions of the poses stored in Dynamic Depth, with their semantics and edge
cases.

Device:RealmPose

Semantics The pose of the Realm with respect to the Earth.

Transformation earth_T realm

Dynamic Depth 1.0 47

Required

Optional

Example Data Source

Device GPS data

Notes

Applications that do not have a concept of a Realm can consider
realm_T_device to always be the identity pose or identity matrix.

Camera:CameraPose

Semantics The pose of the Camera with respect to the Realm.
Transformation realm_T camera
Required Yes for the ARPhoto profile.

Example Data Source

AR: Please see Camera.getPose()
Android: If LENS_POSE_REFERENCE is the gyroscope, this is
just LENS_POSE_TRANSLATION.

For Android APIs prior to P, or if LENS POSE_REFERENCE is the
primary camera, add LENS_POSE_TRANSLATION to that of the

primary camera.

LENS_POSE_ROTATION should always be used directly.

Notes

Applications that do not have a concept of a Realm can consider
realm_T_device to always be the identity pose or identity matrix.

In this case, realm_T_camera is simply the pose of the camera with
respect to the gyroscope on the device. Please see
LENS_POSE_REFERENCE.

Plane:PlanePose

Semantics The pose of the Plane with respect to the Realm.
Transformation realm_T plane
Required Yes, for each Plane in the Planes list.

Example Data Source

ARCore’s Plane API.

This field does not apply for non-AR applications.

Notes

By definition of planar surface semantics and its usage in AR, the
concept of a Realm must be defined in this application.

Dynamic Depth 1.0

48

https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#LENS_POSE_REFERENCE
https://developers.google.com/ar/reference/java/com/google/ar/core/Plane.html#getCenterPose()

AppInfo Pose Guidelines

For applications that may choose to store additional information and their associated poses, the
following conventions are recommended.

Semantics The pose of the object with respect to the Realm.
Transformation realm_T_object

Required Depends on the image writer’s usage of Applinfo:Payload.
Example Data Source | ARCore Anchor APls

Dynamic Depth 1.0 49

