借助 Firebase AI Logic,开发者可以安全地直接将 Google 的生成式 AI 添加到其应用中,从而简化开发流程,并提供工具和产品集成,以便顺利实现正式版发布。它提供了客户端 Android SDK,可从客户端代码直接集成和调用 Gemini API,从而消除对后端的需求,简化开发流程。
API 提供方
借助 Firebase AI 逻辑,您可以使用以下 Google Gemini API 提供程序:Gemini Developer API 和 Vertex AI Gemini API。
为应用选择合适的 API 提供商时,需要考虑您的业务和技术限制,以及对 Vertex AI 和 Google Cloud 生态系统的熟悉程度。大多数刚开始集成 Gemini Pro 或 Gemini Flash 的 Android 开发者都应先从 Gemini Developer API 入手。如需在提供程序之间切换,请更改模型构造函数中的参数:
Kotlin
// For Vertex AI, use `backend = GenerativeBackend.vertexAI()`valmodel=Firebase.ai(backend=GenerativeBackend.googleAI()).generativeModel("gemini-2.5-flash")valresponse=model.generateContent("Write a story about a magic backpack");valoutput=response.text
Java
// For Vertex AI, use `backend = GenerativeBackend.vertexAI()`GenerativeModelfirebaseAI=FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel("gemini-2.5-flash");// Use the GenerativeModelFutures Java compatibility layer which offers// support for ListenableFuture and Publisher APIsGenerativeModelFuturesmodel=GenerativeModelFutures.from(firebaseAI);Contentprompt=newContent.Builder().addText("Write a story about a magic backpack.").build();ListenableFuture<GenerateContentResponse>response=model.generateContent(prompt);Futures.addCallback(response,newFutureCallback<GenerateContentResponse>(){@OverridepublicvoidonSuccess(GenerateContentResponseresult){StringresultText=result.getText();[...]}@OverridepublicvoidonFailure(Throwablet){t.printStackTrace();}},executor);
除了提供对 Gemini API 的访问权限之外,Firebase AI Logic 还提供一组服务,可简化向应用部署支持 AI 的功能,并为正式版做好准备:
App Check
Firebase App Check 可确保只有已获授权的客户端才能访问资源,从而保护应用后端免遭滥用。它可与 Google 服务(包括 Firebase 和 Google Cloud)和自定义后端集成。App Check 使用 Play Integrity 来验证请求是否来自正版应用和未经篡改的设备。
[null,null,["最后更新时间 (UTC):2025-08-17。"],[],[],null,["# Gemini AI models\n\nThe Gemini Pro and Gemini Flash model families offer Android developers\nmultimodal AI capabilities, running inference in the cloud and processing image,\naudio, video, and text inputs in Android apps.\n\n- **Gemini Pro**: Gemini 2.5 Pro is Google's state-of-the-art thinking model, capable of reasoning over complex problems in code, math, and STEM, as well as analyzing large datasets, codebases, and documents using long context.\n- **Gemini Flash**: The Gemini Flash models deliver next-gen features and improved capabilities, including superior speed, built-in tool use, and a 1M token context window.\n\n| **Note:** This document covers the cloud-based Gemini AI models. For on-device inference, [check out the Gemini Nano documentation](/ai/gemini-nano).\n\nFirebase AI Logic\n-----------------\n\nFirebase AI Logic enables developers to securely and directly add Google's\ngenerative AI into their apps simplifying development, and offers tools and\nproduct integrations for successful production readiness. It provides client\nAndroid SDKs to directly integrate and call Gemini APIs from client code,\nsimplifying development by eliminating the need for a backend.\n\nAPI providers\n-------------\n\nFirebase AI Logic lets you use the following Google Gemini API providers:\nGemini *Developer API* and Vertex *AI Gemini API*.\n**Figure 1.** Firebase AI Logic integration architecture.\n\nHere are the primary differences for each API provider:\n\n[**Gemini Developer API**](/ai/gemini/developer-api):\n\n- Get started at no-cost with a generous free tier without payment information required.\n- Optionally upgrade to the paid tier of the Gemini Developer API to scale as your user base grows.\n- Iterate and experiment with prompts and even get code snippets using [Google AI Studio](https://aistudio.google.com/).\n\n[**Vertex AI Gemini API**](/ai/vertex-ai-firebase):\n\n- Granular control over [where you access the model](https://cloud.google.com/compute/docs/regions-zones).\n- Ideal for developers already embedded in the Vertex AI/Google Cloud ecosystem.\n- Iterate and experiment with prompts and even get code snippets using [Vertex AI Studio](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstarts/quickstart).\n\nSelecting the appropriate API provider for your application is based on your\nbusiness and technical constraints, and familiarity with the Vertex AI and\nGoogle Cloud ecosystem. Most Android developers just getting started with Gemini\nPro or Gemini Flash integrations should begin with the Gemini Developer API.\nSwitching between providers is done by changing the parameter in the model\nconstructor: \n\n### Kotlin\n\n // For Vertex AI, use `backend = GenerativeBackend.vertexAI()`\n val model = Firebase.ai(backend = GenerativeBackend.googleAI())\n .generativeModel(\"gemini-2.5-flash\")\n\n val response = model.generateContent(\"Write a story about a magic backpack\");\n val output = response.text\n\n### Java\n\n // For Vertex AI, use `backend = GenerativeBackend.vertexAI()`\n GenerativeModel firebaseAI = FirebaseAI.getInstance(GenerativeBackend.googleAI())\n .generativeModel(\"gemini-2.5-flash\");\n\n // Use the GenerativeModelFutures Java compatibility layer which offers\n // support for ListenableFuture and Publisher APIs\n GenerativeModelFutures model = GenerativeModelFutures.from(firebaseAI);\n\n Content prompt = new Content.Builder()\n .addText(\"Write a story about a magic backpack.\")\n .build();\n\n ListenableFuture\u003cGenerateContentResponse\u003e response = model.generateContent(prompt);\n Futures.addCallback(response, new FutureCallback\u003cGenerateContentResponse\u003e() {\n @Override\n public void onSuccess(GenerateContentResponse result) {\n String resultText = result.getText();\n [...]\n }\n\n @Override\n public void onFailure(Throwable t) {\n t.printStackTrace();\n }\n }, executor);\n\nSee the full [list of available generative AI models](https://firebase.google.com/docs/vertex-ai/models) supported\nby Firebase AI Logic client SDKs.\n\nFirebase services\n-----------------\n\nIn addition to access to the Gemini API, Firebase AI Logic offers a set of\nservices to simplify the deployment of AI-enabled features to your app and get\nready for production:\n\n### App Check\n\n[Firebase App Check](https://firebase.google.com/docs/app-check) safeguards app backends from abuse by\nensuring only authorized clients access resources. It integrates with Google\nservices (including Firebase and Google Cloud) and custom backends. App Check\nuses [Play Integrity](/google/play/integrity) to verify that requests originate from the authentic\napp and an untampered device.\n\n### Remote Config\n\nInstead of hardcoding the model name in your app, we recommend using a\nserver-controlled variable using [Firebase Remote Config](https://firebase.google.com/docs/remote-config). This\nlets you dynamically update the model your app uses without having to deploy a\nnew version of your app or require your users to pick up a new version. You can\nalso use Remote Config to [A/B test](https://firebase.google.com/docs/ab-testing/abtest-config) models and prompts.\n\n### AI monitoring\n\nTo understand how your AI-enabled features are performing you can use the [AI\nmonitoring dashboard](https://firebase.google.com/docs/vertex-ai/monitoring) within the Firebase console. You'll get\nvaluable insights into usage patterns, performance metrics, and debugging\ninformation for your Gemini API calls.\n\nMigrate to Firebase AI Logic\n----------------------------\n\nIf you're already using the Vertex AI in Firebase SDK in your app, read the\n[migration guide](https://firebase.google.com/docs/vertex-ai/migrate-to-latest-sdk)."]]