Aby uzyskać dostęp do modeli Gemini Pro i Flash, zalecamy deweloperom Androida korzystanie z interfejsu Gemini Developer API za pomocą Firebase AI Logic. Umożliwia rozpoczęcie korzystania z usługi bez konieczności podawania karty kredytowej i zapewnia obszerną bezpłatną wersję. Po sprawdzeniu integracji na niewielkiej grupie użytkowników możesz ją wyskalować, przechodząc na wersję płatną.
Pierwsze kroki
Zanim zaczniesz korzystać z interfejsu Gemini API bezpośrednio w aplikacji, musisz wykonać kilka czynności, m.in. zapoznać się z promptami oraz skonfigurować Firebase i aplikację do korzystania z pakietu SDK.
Eksperymentuj z promptami
Eksperymentowanie z promptami może pomóc Ci znaleźć najlepsze sformułowania, treści i formaty dla Twojej aplikacji na Androida. Google AI Studio to środowisko IDE, w którym możesz tworzyć prototypy i projektować prompty do zastosowań w aplikacji.
Tworzenie odpowiedniego promptu do danego zastosowania to bardziej sztuka niż nauka, dlatego eksperymentowanie jest kluczowe. Więcej informacji o wyświetlaniu próśb znajdziesz w dokumentacji Firebase.
Gdy prompt będzie Ci odpowiadać, kliknij przycisk „<>”, aby uzyskać fragmenty kodu, które możesz dodać do swojego kodu.
Konfigurowanie projektu Firebase i łączenie aplikacji z Firebase
Gdy będziesz gotowy(-a) do wywoływania interfejsu API z poziomu aplikacji, wykonaj instrukcje z kroku 1 przewodnika dla początkujących dotyczącego logiki AI w Firebase, aby skonfigurować Firebase i pakiet SDK w aplikacji.
Dodaj zależność Gradle
Dodaj do modułu aplikacji tę zależność Gradle:
Kotlin
dependencies {
// ... other androidx dependencies
// Import the BoM for the Firebase platform
implementation(platform("com.google.firebase:firebase-bom:34.1.0"))
// Add the dependency for the Firebase AI Logic library When using the BoM,
// you don't specify versions in Firebase library dependencies
implementation("com.google.firebase:firebase-ai")
}
Java
dependencies {
// Import the BoM for the Firebase platform
implementation(platform("com.google.firebase:34.1.0"))
// Add the dependency for the Firebase AI Logic library When using the BoM,
// you don't specify versions in Firebase library dependencies
implementation("com.google.firebase:firebase-ai")
// Required for one-shot operations (to use `ListenableFuture` from Guava
// Android)
implementation("com.google.guava:guava:31.0.1-android")
// Required for streaming operations (to use `Publisher` from Reactive
// Streams)
implementation("org.reactivestreams:reactive-streams:1.0.4")
}
Inicjowanie modelu generatywnego
Zacznij od utworzenia instancji GenerativeModel i określenia nazwy modelu:
Kotlin
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
Java
GenerativeModel firebaseAI = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(firebaseAI);
Dowiedz się więcej o dostępnych modelach, których można używać z interfejsem Gemini Developer API. Możesz też dowiedzieć się więcej o konfigurowaniu parametrów modelu.
Korzystanie z interfejsu Gemini Developer API w aplikacji
Po skonfigurowaniu Firebase i aplikacji do korzystania z pakietu SDK możesz już wchodzić w interakcje z interfejsem Gemini Developer API z poziomu aplikacji.
Generowanie tekstu
Aby wygenerować odpowiedź tekstową, wywołaj funkcję generateContent() z promptem.
Kotlin
scope.launch {
val response = model.generateContent("Write a story about a magic backpack.")
}
Java
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
[...]
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Generowanie tekstu z obrazów i innych multimediów
Możesz też generować tekst na podstawie prompta, który zawiera tekst oraz obrazy lub inne multimedia. Gdy dzwonisz pod numer generateContent(), możesz przekazywać multimedia jako dane wbudowane.
Aby na przykład użyć mapy bitowej, użyj typu treści image:
Kotlin
scope.launch {
val response = model.generateContent(
content {
image(bitmap)
text("what is the object in the picture?")
}
)
}
Java
Content content = new Content.Builder()
.addImage(bitmap)
.addText("what is the object in the picture?")
.build();
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
[...]
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Aby przekazać plik audio, użyj typu treści inlineData:
Kotlin
val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
val prompt = content {
inlineData(bytes, "audio/mpeg") // Specify the appropriate audio MIME type
text("Transcribe this audio recording.")
}
val response = model.generateContent(prompt)
}
}
Java
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(audioUri)) {
File audioFile = new File(new URI(audioUri.toString()));
int audioSize = (int) audioFile.length();
byte audioBytes = new byte[audioSize];
if (stream != null) {
stream.read(audioBytes, 0, audioBytes.length);
stream.close();
// Provide a prompt that includes audio specified earlier and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "audio/mpeg") // Specify the appropriate audio MIME type
.addText("Transcribe what's said in this audio recording.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid audio file", e);
}
Aby podać plik wideo, nadal używaj typu treści inlineData:
Kotlin
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
val prompt = content {
inlineData(bytes, "video/mp4") // Specify the appropriate video MIME type
text("Describe the content of this video")
}
val response = model.generateContent(prompt)
}
}
Java
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes video specified earlier and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("Describe the content of this video")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Podobnie możesz przekazywać dokumenty PDF (application/pdf) i zwykłe dokumenty tekstowe (text/plain), przekazując ich odpowiedni typ MIME jako parametr.
Czat wieloetapowy
Możesz też obsługiwać rozmowy wieloetapowe. Zainicjuj czat za pomocą funkcji startChat(). Opcjonalnie możesz podać modelowi historię wiadomości. Następnie wywołaj funkcję sendMessage(), aby wysyłać wiadomości na czacie.
Kotlin
val chat = model.startChat(
history = listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") { text("Great to meet you. What would you like to know?") }
)
)
scope.launch {
val response = chat.sendMessage("How many paws are in my house?")
}
Java
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");
Content message = messageBuilder.build();
// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Więcej informacji znajdziesz w dokumentacji Firebase.
Dalsze kroki
- Zapoznaj się z przykładową aplikacją Firebase do szybkiego rozpoczęcia pracy na Androidzie i katalogiem przykładowych aplikacji AI na Androida na GitHubie.
- Przygotuj aplikację do wdrożenia, w tym skonfiguruj funkcję Sprawdzanie aplikacji Firebase, aby chronić interfejs Gemini API przed nadużyciami ze strony nieautoryzowanych klientów.
- Więcej informacji o Firebase AI Logic znajdziesz w dokumentacji Firebase.