行為變更:指定 Android 15 以上版本的應用程式

和先前的版本一樣,Android 15 也包含可能影響運作的行為變更 下列行為變更僅適用於符合下列條件的應用程式: 指定 Android 15 以上版本。如果您的應用程式指定 Android 15 以上版本 您必須修改應用程式,才能正確支援這些行為,

請務必查看影響所有應用程式的行為變更清單 在 Android 15 上執行,無論應用程式的 targetSdkVersion 為何。

核心功能

Android 15 修改或擴充 Android 系統的各種核心功能。

前景服務變更

We are making the following changes to foreground services with Android 15.

Data sync foreground service timeout behavior

Android 15 針對指定應用程式,為 dataSync 推出了新的逾時行為 Android 15 (API 級別 35) 以上版本。這個行為也適用於新的 mediaProcessing 個前景服務類型

系統允許應用程式的 dataSync 服務執行總計 6 小時 24 小時期間,系統會呼叫執行中服務的 Service.onTimeout(int, int) 方法 (於 Android 推出) 15)。服務目前有幾秒鐘需要呼叫 Service.stopSelf()。呼叫 Service.onTimeout() 時, 服務不再視為前景服務。如果服務未 呼叫 Service.stopSelf() 時,系統會擲回內部例外狀況。 系統會透過以下訊息在 Logcat 中記錄例外狀況:

Fatal Exception: android.app.RemoteServiceException: "A foreground service of
type dataSync did not stop within its timeout: [component name]"

為避免這種行為變更發生問題,您可以採取 包括:

  1. 讓您的服務實作新的 Service.onTimeout(int, int) 方法。 應用程式收到回呼時,請務必在stopSelf() 幾秒內。(如果您沒有立即停止應用程式,系統會自動產生新的 失敗。)
  2. 確認應用程式的 dataSync 服務執行時間不得超過 每 24 小時為 6 小時 (除非使用者與應用程式互動, 重設計時器)。
  3. 只因直接使用者而啟動 dataSync 前景服務 互動;因為您的應用程式在服務啟動時位於前景。 並在應用程式進入背景的六小時後,獲得完整的服務存取權。
  4. 不使用 dataSync 前景服務,而是改用 替代 API

如果應用程式的 dataSync 前景服務在過去 6 小時內執行了 6 小時 24,「除非」使用者,否則您無法啟動另一項 dataSync 前景服務 將應用程式移至前景 (重設計時器)。如果您嘗試 啟動另一項 dataSync 前景服務,系統會擲回 ForegroundServiceStartNotAllowedException 並顯示「前景服務時間已達上限」等錯誤訊息 類型 dataSync」。

測試

如要測試應用程式的行為,您可以啟用資料同步處理逾時功能 (即使您的應用程式是如此) 未指定 Android 15 (只要應用程式在 Android 15 上執行即可) 裝置)。如要啟用逾時,請執行下列 adb 指令:

adb shell am compat enable FGS_INTRODUCE_TIME_LIMITS your-package-name

此外,您也可以調整逾時期限,方便測試 達到限制時,應用程式就會繼續運作。如要設定新的逾時期限,請執行 以下 adb 指令:

adb shell device_config put activity_manager data_sync_fgs_timeout_duration duration-in-milliseconds

New media processing foreground service type

Android 15 introduces a new foreground service type, mediaProcessing. This service type is appropriate for operations like transcoding media files. For example, a media app might download an audio file and need to convert it to a different format before playing it. You can use a mediaProcessing foreground service to make sure the conversion continues even while the app is in the background.

The system permits an app's mediaProcessing services to run for a total of 6 hours in a 24-hour period, after which the system calls the running service's Service.onTimeout(int, int) method (introduced in Android 15). At this time, the service has a few seconds to call Service.stopSelf(). If the service does not call Service.stopSelf(), the system throws an internal exception. The exception is logged in Logcat with the following message:

Fatal Exception: android.app.RemoteServiceException: "A foreground service of
type mediaProcessing did not stop within its timeout: [component name]"

To avoid having the exception, you can do one of the following:

  1. Have your service implement the new Service.onTimeout(int, int) method. When your app receives the callback, make sure to call stopSelf() within a few seconds. (If you don't stop the app right away, the system generates a failure.)
  2. Make sure your app's mediaProcessing services don't run for more than a total of 6 hours in any 24-hour period (unless the user interacts with the app, resetting the timer).
  3. Only start mediaProcessing foreground services as a result of direct user interaction; since your app is in the foreground when the service starts, your service has the full six hours after the app goes to the background.
  4. Instead of using a mediaProcessing foreground service, use an alternative API, like WorkManager.

If your app's mediaProcessing foreground services have run for 6 hours in the last 24, you cannot start another mediaProcessing foreground service unless the user has brought your app to the foreground (which resets the timer). If you try to start another mediaProcessing foreground service, the system throws ForegroundServiceStartNotAllowedException with an error message like "Time limit already exhausted for foreground service type mediaProcessing".

For more information about the mediaProcessing service type, see Changes to foreground service types for Android 15: Media processing.

Testing

To test your app's behavior, you can enable media processing timeouts even if your app is not targeting Android 15 (as long as the app is running on an Android 15 device). To enable timeouts, run the following adb command:

adb shell am compat enable FGS_INTRODUCE_TIME_LIMITS your-package-name

You can also adjust the timeout period, to make it easier to test how your app behaves when the limit is reached. To set a new timeout period, run the following adb command:

adb shell device_config put activity_manager media_processing_fgs_timeout_duration duration-in-milliseconds

Restrictions on BOOT_COMPLETED broadcast receivers launching foreground services

在启动 BOOT_COMPLETED 广播接收器方面存在新限制 前台服务。BOOT_COMPLETED 接收器能启动 以下类型的前台服务:

如果 BOOT_COMPLETED 接收器尝试启动任何上述类型的前台 服务,系统会抛出 ForegroundServiceStartNotAllowedException

测试

如需测试应用的行为,您可以启用这些新限制,即使您的应用并未以 Android 15 为目标平台(只要应用在 Android 15 设备上运行)也是如此。运行以下 adb 命令:

adb shell am compat enable FGS_BOOT_COMPLETED_RESTRICTIONS your-package-name

如需在不重启设备的情况下发送 BOOT_COMPLETED 广播,请运行以下 adb 命令:

adb shell am broadcast -a android.intent.action.BOOT_COMPLETED your-package-name

Restrictions on starting foreground services while an app holds the SYSTEM_ALERT_WINDOW permission

Previously, if an app held the SYSTEM_ALERT_WINDOW permission, it could launch a foreground service even if the app was currently in the background (as discussed in exemptions from background start restrictions).

If an app targets Android 15, this exemption is now narrower. The app now needs to have the SYSTEM_ALERT_WINDOW permission and also have a visible overlay window. That is, the app needs to first launch a TYPE_APPLICATION_OVERLAY window and the window needs to be visible before you start a foreground service.

If your app attempts to start a foreground service from the background without meeting these new requirements (and it does not have some other exemption), the system throws ForegroundServiceStartNotAllowedException.

If your app declares the SYSTEM_ALERT_WINDOW permission and launches foreground services from the background, it may be affected by this change. If your app gets a ForegroundServiceStartNotAllowedException, check your app's order of operations and make sure your app already has an active overlay window before it attempts to start a foreground service from the background. You can check if your overlay window is currently visible by calling View.getWindowVisibility(), or you can override View.onWindowVisibilityChanged() to get notified whenever the visibility changes.

Testing

To test your app's behavior, you can enable these new restrictions even if your app is not targeting Android 15 (as long as the app is running on an Android 15 device). To enable these new restrictions on starting foreground services from the background, run the following adb command:

adb shell am compat enable FGS_SAW_RESTRICTIONS your-package-name

應用程式何時可修改「零打擾」模式的全域狀態異動

Apps that target Android 15 (API level 35) and higher can no longer change the global state or policy of Do Not Disturb (DND) on a device (either by modifying user settings, or turning off DND mode). Instead, apps must contribute an AutomaticZenRule, which the system combines into a global policy with the existing most-restrictive-policy-wins scheme. Calls to existing APIs that previously affected global state (setInterruptionFilter, setNotificationPolicy) result in the creation or update of an implicit AutomaticZenRule, which is toggled on and off depending on the call-cycle of those API calls.

Note that this change only affects observable behavior if the app is calling setInterruptionFilter(INTERRUPTION_FILTER_ALL) and expects that call to deactivate an AutomaticZenRule that was previously activated by their owners.

OpenJDK API 變更

Android 15 continues the work of refreshing Android's core libraries to align with the features in the latest OpenJDK LTS releases.

Some of these changes can affect app compatibility for apps targeting Android 15 (API level 35):

  • Changes to string formatting APIs: Validation of argument index, flags, width, and precision are now more strict when using the following String.format() and Formatter.format() APIs:

    For example, the following exception is thrown when an argument index of 0 is used (%0 in the format string):

    IllegalFormatArgumentIndexException: Illegal format argument index = 0
    

    In this case, the issue can be fixed by using an argument index of 1 (%1 in the format string).

  • Changes to component type of Arrays.asList(...).toArray(): When using Arrays.asList(...).toArray(), the component type of the resulting array is now an Object—not the type of the underlying array's elements. So the following code throws a ClassCastException:

    String[] elements = (String[]) Arrays.asList("one", "two").toArray();
    

    For this case, to preserve String as the component type in the resulting array, you could use Collection.toArray(Object[]) instead:

    String[] elements = Arrays.asList("two", "one").toArray(new String[0]);
    
  • Changes to language code handling: When using the Locale API, language codes for Hebrew, Yiddish, and Indonesian are no longer converted to their obsolete forms (Hebrew: iw, Yiddish: ji, and Indonesian: in). When specifying the language code for one of these locales, use the codes from ISO 639-1 instead (Hebrew: he, Yiddish: yi, and Indonesian: id).

  • Changes to random int sequences: Following the changes made in https://bugs.openjdk.org/browse/JDK-8301574, the following Random.ints() methods now return a different sequence of numbers than the Random.nextInt() methods do:

    Generally, this change shouldn't result in app-breaking behavior, but your code shouldn't expect the sequence generated from Random.ints() methods to match Random.nextInt().

The new SequencedCollection API can affect your app's compatibility after you update compileSdk in your app's build configuration to use Android 15 (API level 35):

  • Collision with MutableList.removeFirst() and MutableList.removeLast() extension functions in kotlin-stdlib

    The List type in Java is mapped to the MutableList type in Kotlin. Because the List.removeFirst() and List.removeLast() APIs have been introduced in Android 15 (API level 35), the Kotlin compiler resolves function calls, for example list.removeFirst(), statically to the new List APIs instead of to the extension functions in kotlin-stdlib.

    If an app is re-compiled with compileSdk set to 35 and minSdk set to 34 or lower, and then the app is run on Android 14 and lower, a runtime error is thrown:

    java.lang.NoSuchMethodError: No virtual method
    removeFirst()Ljava/lang/Object; in class Ljava/util/ArrayList;
    

    The existing NewApi lint option in Android Gradle Plugin can catch these new API usages.

    ./gradlew lint
    
    MainActivity.kt:41: Error: Call requires API level 35 (current min is 34): java.util.List#removeFirst [NewApi]
          list.removeFirst()
    

    To fix the runtime exception and lint errors, the removeFirst() and removeLast() function calls can be replaced with removeAt(0) and removeAt(list.lastIndex) respectively in Kotlin. If you're using Android Studio Ladybug | 2024.1.3 or higher, it also provides a quick fix option for these errors.

    Consider removing @SuppressLint("NewApi") and lintOptions { disable 'NewApi' } if the lint option has been disabled.

  • Collision with other methods in Java

    New methods have been added into the existing types, for example, List and Deque. These new methods might not be compatible with the methods with the same name and argument types in other interfaces and classes. In the case of a method signature collision with incompatibility, the javac compiler outputs a build-time error. For example:

    Example error 1:

    javac MyList.java
    
    MyList.java:135: error: removeLast() in MyList cannot implement removeLast() in List
      public void removeLast() {
                  ^
      return type void is not compatible with Object
      where E is a type-variable:
        E extends Object declared in interface List
    

    Example error 2:

    javac MyList.java
    
    MyList.java:7: error: types Deque<Object> and List<Object> are incompatible;
    public class MyList implements  List<Object>, Deque<Object> {
      both define reversed(), but with unrelated return types
    1 error
    

    Example error 3:

    javac MyList.java
    
    MyList.java:43: error: types List<E#1> and MyInterface<E#2> are incompatible;
    public static class MyList implements List<Object>, MyInterface<Object> {
      class MyList inherits unrelated defaults for getFirst() from types List and MyInterface
      where E#1,E#2 are type-variables:
        E#1 extends Object declared in interface List
        E#2 extends Object declared in interface MyInterface
    1 error
    

    To fix these build errors, the class implementing these interfaces should override the method with a compatible return type. For example:

    @Override
    public Object getFirst() {
        return List.super.getFirst();
    }
    

安全性

Android 15 包含促進系統安全性的調整,有助於保護應用程式 以及惡意應用程式的使用者

啟動安全的背景活動

Android 15 protects users from malicious apps and gives them more control over their devices by adding changes that prevent malicious background apps from bringing other apps to the foreground, elevating their privileges, and abusing user interaction. Background activity launches have been restricted since Android 10 (API level 29).

Other changes

In addition to the restriction for UID matching, these other changes are also included:

  • Change PendingIntent creators to block background activity launches by default. This helps prevent apps from accidentally creating a PendingIntent that could be abused by malicious actors.
  • Don't bring an app to the foreground unless the PendingIntent sender allows it. This change aims to prevent malicious apps from abusing the ability to start activities in the background. By default, apps are not allowed to bring the task stack to the foreground unless the creator allows background activity launch privileges or the sender has background activity launch privileges.
  • Control how the top activity of a task stack can finish its task. If the top activity finishes a task, Android will go back to whichever task was last active. Moreover, if a non-top activity finishes its task, Android will go back to the home screen; it won't block the finish of this non-top activity.
  • Prevent launching arbitrary activities from other apps into your own task. This change prevents malicious apps from phishing users by creating activities that appear to be from other apps.
  • Block non-visible windows from being considered for background activity launches. This helps prevent malicious apps from abusing background activity launches to display unwanted or malicious content to users.

更安全的意圖

Android 15 introduces new optional security measures to make intents safer and more robust. These changes are aimed at preventing potential vulnerabilities and misuse of intents that can be exploited by malicious apps. There are two main improvements to the security of intents in Android 15:

  • Match target intent-filters: Intents that target specific components must accurately match the target's intent-filter specifications. If you send an intent to launch another app's activity, the target intent component needs to align with the receiving activity's declared intent-filters.
  • Intents must have actions: Intents without an action will no longer match any intent-filters. This means that intents used to start activities or services must have a clearly defined action.

In order to check how your app responds to these changes, use StrictMode in your app. To see detailed logs about Intent usage violations, add the following method:

Kotlin


fun onCreate() {
    StrictMode.setVmPolicy(VmPolicy.Builder()
        .detectUnsafeIntentLaunch()
        .build()
    )
}

Java


public void onCreate() {
    StrictMode.setVmPolicy(new VmPolicy.Builder()
            .detectUnsafeIntentLaunch()
            .build());
}

使用者體驗和系統 UI

Android 15 包含幾項變更,目的是創造更一致的體驗。 直覺的使用者體驗

視窗插邊變更

There are two changes related to window insets in Android 15: edge-to-edge is enforced by default, and there are also configuration changes, such as the default configuration of system bars.

全面实施政策

Apps are edge-to-edge by default on devices running Android 15 if the app is targeting Android 15 (API level 35).

An app that targets Android 14 and is not edge-to-edge on an Android 15 device.


An app that targets Android 15 (API level 35) and is edge-to-edge on an Android 15 device. This app mostly uses Material 3 Compose Components that automatically apply insets. This screen is not negatively impacted by the Android 15 edge-to-edge enforcement.

This is a breaking change that might negatively impact your app's UI. The changes affect the following UI areas:

  • Gesture handle navigation bar
    • Transparent by default.
    • Bottom offset is disabled so content draws behind the system navigation bar unless insets are applied.
    • setNavigationBarColor and R.attr#navigationBarColor are deprecated and don't affect gesture navigation.
    • setNavigationBarContrastEnforced and R.attr#navigationBarContrastEnforced continue to have no effect on gesture navigation.
  • 3-button navigation
    • Opacity set to 80% by default, with color possibly matching the window background.
    • Bottom offset disabled so content draws behind the system navigation bar unless insets are applied.
    • setNavigationBarColor and R.attr#navigationBarColor are set to match the window background by default. The window background must be a color drawable for this default to apply. This API is deprecated but continues to affect 3-button navigation.
    • setNavigationBarContrastEnforced and R.attr#navigationBarContrastEnforced is true by default, which adds an 80% opaque background across 3-button navigation.
  • Status bar
    • Transparent by default.
    • The top offset is disabled so content draws behind the status bar unless insets are applied.
    • setStatusBarColor and R.attr#statusBarColor are deprecated and have no effect on Android 15.
    • setStatusBarContrastEnforced and R.attr#statusBarContrastEnforced are deprecated but still have an effect on Android 15.
  • Display cutout
    • layoutInDisplayCutoutMode of non-floating windows must be LAYOUT_IN_DISPLAY_CUTOUT_MODE_ALWAYS. SHORT_EDGES, NEVER, and DEFAULT are interpreted as ALWAYS so that users don't see a black bar caused by the display cutout and appear edge-to-edge.

The following example shows an app before and after targeting Android 15 (API level 35), and before and after applying insets.

An app that targets Android 14 and is not edge-to-edge on an Android 15 device.
An app that targets Android 15 (API level 35) and is edge-to-edge on an Android 15 device. However, many elements are now hidden by the status bar, 3-button navigation bar, or display cutout due to the Android 15 edge-to-edge enforcements. Hidden UI includes the Material 2 top app bar, floating action buttons, and list items.
An app that targets Android 15 (API level 35), is edge to edge on an Android 15 device and applies insets so that UI is not hidden.
What to check if your app is already edge-to-edge

If your app is already edge-to-edge and applies insets, you are mostly unimpacted, except in the following scenarios. However, even if you think you aren't impacted, we recommend you test your app.

  • You have a non-floating window, such as an Activity that uses SHORT_EDGES, NEVER or DEFAULT instead of LAYOUT_IN_DISPLAY_CUTOUT_MODE_ALWAYS. If your app crashes on launch, this might be due to your splashscreen. You can either upgrade the core splashscreen dependency to 1.2.0-alpha01 or later or set window.attributes.layoutInDisplayCutoutMode = WindowManager.LayoutInDisplayCutoutMode.always.
  • There might be lower-traffic screens with occluded UI. Verify these less-visited screens don't have occluded UI. Lower-traffic screens include:
    • Onboarding or sign-in screens
    • Settings pages
What to check if your app is not already edge-to-edge

If your app is not already edge-to-edge, you are most likely impacted. In addition to the scenarios for apps that are already edge-to-edge, you should consider the following:

  • If your app uses Material 3 Components ( androidx.compose.material3) in compose, such as TopAppBar, BottomAppBar, and NavigationBar, these components are likely not impacted because they automatically handle insets.
  • If your app is using Material 2 Components ( androidx.compose.material) in Compose, these components don't automatically handle insets. However, you can get access to the insets and apply them manually. In androidx.compose.material 1.6.0 and later, use the windowInsets parameter to apply the insets manually for BottomAppBar, TopAppBar, BottomNavigation, and NavigationRail. Likewise, use the contentWindowInsets parameter for Scaffold.
  • If your app uses views and Material Components (com.google.android.material), most views-based Material Components such as BottomNavigationView, BottomAppBar, NavigationRailView, or NavigationView, handle insets and require no additional work. However, you need to add android:fitsSystemWindows="true" if using AppBarLayout.
  • For custom composables, apply the insets manually as padding. If your content is within a Scaffold, you can consume insets using the Scaffold padding values. Otherwise, apply padding using one of the WindowInsets.
  • If your app is using views and BottomSheet, SideSheet or custom containers, apply padding using ViewCompat.setOnApplyWindowInsetsListener. For RecyclerView, apply padding using this listener and also add clipToPadding="false".
What to check if your app must offer custom background protection

If your app must offer custom background protection to 3-button navigation or the status bar, your app should place a composable or view behind the system bar using WindowInsets.Type#tappableElement() to get the 3-button navigation bar height or WindowInsets.Type#statusBars.

Additional edge-to-edge resources

See the Edge to Edge Views and Edge to Edge Compose guides for additional considerations on applying insets.

Deprecated APIs

The following APIs are now deprecated:

稳定配置

If your app targets Android 15 (API level 35) or higher, Configuration no longer excludes the system bars. If you use the screen size in the Configuration class for layout calculation, you should replace it with better alternatives like an appropriate ViewGroup, WindowInsets, or WindowMetricsCalculator depending on your need.

Configuration has been available since API 1. It is typically obtained from Activity.onConfigurationChanged. It provides information like window density, orientation, and sizes. One important characteristic about the window sizes returned from Configuration is that it previously excluded the system bars.

The configuration size is typically used for resource selection, such as /res/layout-h500dp, and this is still a valid use case. However, using it for layout calculation has always been discouraged. If you do so, you should move away from it now. You should replace the use of Configuration with something more suitable depending on your use case.

If you use it to calculate the layout, use an appropriate ViewGroup, such as CoordinatorLayout or ConstraintLayout. If you use it to determine the height of the system navbar, use WindowInsets. If you want to know the current size of your app window, use computeCurrentWindowMetrics.

The following list describes the fields affected by this change:

routeTextHeight 屬性預設為 true

For apps targeting Android 15 (API level 35), the elegantTextHeight TextView attribute becomes true by default, replacing the compact font used by default with some scripts that have large vertical metrics with one that is much more readable. The compact font was introduced to prevent breaking layouts; Android 13 (API level 33) prevents many of these breakages by allowing the text layout to stretch the vertical height utilizing the fallbackLineSpacing attribute.

In Android 15, the compact font still remains in the system, so your app can set elegantTextHeight to false to get the same behavior as before, but it is unlikely to be supported in upcoming releases. So, if your app supports the following scripts: Arabic, Lao, Myanmar, Tamil, Gujarati, Kannada, Malayalam, Odia, Telugu or Thai, test your app by setting elegantTextHeight to true.

elegantTextHeight behavior for apps targeting Android 14 (API level 34) and lower.
elegantTextHeight behavior for apps targeting Android 15.

針對複雜的字母形狀變更 TextView 寬度

而在舊版 Android 中,部分文字敘述的字型或語言 複雜的形狀可能會畫出前一個字元區域或下一個字元區域的字母。 在某些情況下,這類字母會在開頭或結束位置遭到截斷。 自 Android 15 起,TextView 會分配寬度,以便繪製足夠的空間 以便應用程式向左側 避免剪輯。

這項變更會影響 TextView 決定寬度的方式,因此 TextView 在預設情況下,如果應用程式指定 Android 15 (API 級別 35) 或 更高。您可以呼叫 TextView 上的 setUseBoundsForWidth API。

由於新增左側邊框間距可能會導致現有版面配置無法對齊 依預設,即使指定 Android 15 以上版本的應用程式,也不會新增邊框間距。 但是,您可以透過呼叫 setShiftDrawingOffsetForStartOverhang

以下範例說明這些變更如何改善部分應用程式的文字版面配置 以及字型和語言

標準版面配置,顯示遞迴字型的英文文字。部分 字母遭到截斷。以下是對應的 XML:

<TextView
    android:fontFamily="cursive"
    android:text="java" />
相同英文文字的版面配置,寬度和加寬 邊框間距。以下是對應的 XML:

<TextView
    android:fontFamily="cursive"
    android:text="java"
    android:useBoundsForWidth="true"
    android:shiftDrawingOffsetForStartOverhang="true" />
泰文標準版面配置。部分字母遭到截斷。 以下是對應的 XML:

<TextView
    android:text="คอมพิวเตอร์" />
相同泰文文字的版面配置,如果增加寬度和 邊框間距。以下是對應的 XML:

<TextView
    android:text="คอมพิวเตอร์"
    android:useBoundsForWidth="true"
    android:shiftDrawingOffsetForStartOverhang="true" />

EditText 可感知本地化的預設行高

In previous versions of Android, the text layout stretched the height of the text to meet the line height of the font that matched the current locale. For example, if the content was in Japanese, because the line height of the Japanese font is slightly larger than the one of a Latin font, the height of the text became slightly larger. However, despite these differences in line heights, the EditText element was sized uniformly, regardless of the locale being used, as illustrated in the following image:

Three boxes representing EditText elements that can contain text from English (en), Japanese (ja), and Burmese (my). The height of the EditText is the same, even though these languages have different line heights from each other.

For apps targeting Android 15 (API level 35), a minimum line height is now reserved for EditText to match the reference font for the specified Locale, as shown in the following image:

Three boxes representing EditText elements that can contain text from English (en), Japanese (ja), and Burmese (my). The height of the EditText now includes space to accommodate the default line height for these languages' fonts.

If needed, your app can restore the previous behavior by specifying the useLocalePreferredLineHeightForMinimum attribute to false, and your app can set custom minimum vertical metrics using the setMinimumFontMetrics API in Kotlin and Java.

相機與媒體

Android 15 針對應用程式的相機和媒體行為進行下列變更 並指定 Android 15 以上版本為目標。

要求音訊焦點的限制

以 Android 15 為目標的應用程式必須是頂層應用程式或執行前景服務,才能要求音訊焦點。如果應用程式嘗試要求焦點,但不符合上述其中一項要求,呼叫會傳回 AUDIOFOCUS_REQUEST_FAILED

如要進一步瞭解音訊焦點,請參閱管理音訊焦點一文。

更新非 SDK 限制

Android 15 內含最新的受限制非 SDK 清單 介面是以與 Android 開發人員合作為基礎,並採用 內部測試。我們會盡可能確保公開的替代方案 ,然後再限制非 SDK 介面使用

如果您的應用程式並不是以 Android 15 為目標版本,則其中某些變更 可能無法立即對您造成影響不過,雖然應用程式可以存取某些非 SDK 介面 (視應用程式的目標 API 級別而定),但使用任何非 SDK 方法或欄位時,均可能面臨應用程式故障的高度風險。

如果不確定應用程式是否使用非 SDK 介面,您可以測試應用程式來確認。如果您的應用程式仰賴非 SDK 介面,則建議您開始規劃遷移至 SDK 替代方案。我們瞭解有些應用程式具備使用情境 非 SDK 介面如果您除了為應用程式中的某個功能使用非 SDK 介面外,已別無他法,則應要求新的公用 API

如要進一步瞭解此 Android 版本中的變更,請參閱 Android 15 的非 SDK 介面限制更新內容。如要進一步瞭解非 SDK 介面的一般資訊,請參閱非 SDK 介面的限制