多摄像头 API

注意:本页介绍的是 Camera2 软件包。除非您的应用需要 Camera2 中的特定低级功能,否则我们建议您使用 CameraX。CameraX 和 Camera2 都支持 Android 5.0(API 级别 21)及更高版本。

Android 9(API 级别 28)中引入了多摄像头。自发布以来, 已经上市的设备都支持此 API。许多多摄像头应用场景 与特定硬件配置紧密耦合。也就是说, 所有用例都与每种设备兼容,这使得多摄像头 是针对 Play 功能 投放

一些典型用例包括:

  • 缩放:根据剪裁区域或所需的焦点在镜头之间切换 。
  • 深度:使用多个镜头构建深度图。
  • 焦外成像:使用推断的深度信息模拟数码单反式窄屏效果 对焦范围。

逻辑摄像头和物理摄像头的区别

了解多摄像头 API 需要了解 逻辑摄像头和物理摄像头。作为参考,我们假设有一个设备 后置摄像头。在本示例中,三个后置摄像头分别 都属于实体相机。逻辑摄像头是指 物理摄像头。逻辑的输出 摄像头可以是来自某个底层物理摄像头的视频流, 或者来自多个底层物理摄像头的融合数据流 。无论采用哪种方式,视频流都由相机硬件处理 抽象层 (HAL)。

许多手机制造商都开发了第一方相机应用,这些应用通常 但其设备上已预装了该应用要使用硬件的所有功能, 它们可能会使用私有或隐藏 API,或者从 其他应用无权访问的驱动程序实现。部分 通过提供融合数据流, 但只能传输到具有特定特权的 应用。通常情况下,只有一个物理摄像头 框架。Android 9 之前第三方开发者的情况是 如下图所示:

图 1. 相机功能通常仅适用于 特权应用

从 Android 9 开始,Android 应用中不再允许使用私有 API。 通过在框架中包含多摄像头支持,Android 最佳 强烈建议手机制造商公开一个逻辑摄像头, 所有物理摄像头都朝向同一方向下面介绍了 应该能在运行 Android 9 和 较高:

图 2. 开发者对所有摄像头设备的完整访问权限 从 Android 9 开始

逻辑摄像头提供的内容完全取决于 OEM 实现 相机 HAL 的组件。例如,像 Pixel 3 这样的设备会实现其逻辑 让它能够根据实例选择 请求的焦距和剪裁区域。

多摄像头 API

新 API 添加了以下新常量、类和方法:

由于 Android 兼容性定义文档 (CDD) 有所变更, 对多摄像头 API 也有一些期望。设备 Android 9 之前的版本中存在配备双摄像头,但同时打开了多个摄像头的情况 同时涉及试错。在 Android 9 及更高版本上,多摄像头 提供了一组规则,用于指定何时可以打开一对物理 属于同一逻辑摄像头的一部分。

在大多数情况下,搭载 Android 9 及更高版本的设备会公开所有 以及红外线等不太常见的传感器类型除外) 更易于使用的逻辑摄像头对于 那么属于逻辑摄像头的一个视频流就可以被替换为 来自底层物理摄像头的两个视频流。

同时观看多个直播

同时使用多个摄像头信息流 涵盖在单个摄像头中同时使用多个视频流的规则。 只要有一项值得注意的新增内容,那么同样的规则也适用于多个摄像头。 CameraMetadata.REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA 解释了如何将逻辑 YUV_420_888 或原始流替换为两个 实体视频流也就是说,每个 YUV 或 RAW 类型的流都可替换为 两个具有相同类型和大小的数据流。你可以先从相机流开始, 单摄像头设备的以下有保证配置:

  • 数据流 1:YUV 类型,来自逻辑摄像头 id = 0MAXIMUM 大小

然后,在支持多摄像头的设备上创建会话 将该逻辑 YUV 流替换为两个物理流:

  • 数据流 1:YUV 类型,MAXIMUM 大小,来自物理摄像头 id = 1
  • 数据流 2:YUV 类型,MAXIMUM 大小,来自物理摄像头 id = 2

当且仅当满足以下条件时,您才可以将 YUV 或 RAW 流替换为两个等效的流 这两台摄像头属于一个逻辑摄像头分组,该分组列于 CameraCharacteristics.getPhysicalCameraIds()

框架提供的保证只是运行 3D 模型 同时从多个物理摄像头获取帧。其他直播 有时甚至允许打开多个实体设备 摄像头设备由于这并不能保证 框架,要做到这一点,需要使用 不断尝试和犯错。

创建具有多个物理摄像头的会话

在支持多摄像头的设备上使用物理摄像头时,打开一个 CameraDevice(逻辑摄像头),并在单个对象中与其交互 会话。使用 API 创建单个会话 CameraDevice.createCaptureSession(SessionConfiguration config),原为 在 API 级别 28 中引入。会话配置有许多输出 每个配置都有一组输出目标,以及 所需的物理摄像头 ID。

图 3. SessionConfiguration 和 OutputConfiguration 模型

捕获请求具有与之关联的输出目标。框架 根据请求发送到哪个物理(或逻辑)摄像头 附加了哪个输出目标。如果输出目标对应于 作为输出配置与物理 摄像头 ID,然后该物理摄像头会接收并处理请求。

使用一对物理摄像头

用于多摄像头的相机 API 的另一个新增功能是识别 并找出它们背后的物理摄像头您可以定义 函数来帮助识别可以使用的可能的物理摄像头对 替换其中一个逻辑摄像头信息流:

Kotlin

/**
     * Helper class used to encapsulate a logical camera and two underlying
     * physical cameras
     */
    data class DualCamera(val logicalId: String, val physicalId1: String, val physicalId2: String)

    fun findDualCameras(manager: CameraManager, facing: Int? = null): List {
        val dualCameras = MutableList()

        // Iterate over all the available camera characteristics
        manager.cameraIdList.map {
            Pair(manager.getCameraCharacteristics(it), it)
        }.filter {
            // Filter by cameras facing the requested direction
            facing == null || it.first.get(CameraCharacteristics.LENS_FACING) == facing
        }.filter {
            // Filter by logical cameras
            // CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA requires API >= 28
            it.first.get(CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES)!!.contains(
                CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA)
        }.forEach {
            // All possible pairs from the list of physical cameras are valid results
            // NOTE: There could be N physical cameras as part of a logical camera grouping
            // getPhysicalCameraIds() requires API >= 28
            val physicalCameras = it.first.physicalCameraIds.toTypedArray()
            for (idx1 in 0 until physicalCameras.size) {
                for (idx2 in (idx1 + 1) until physicalCameras.size) {
                    dualCameras.add(DualCamera(
                        it.second, physicalCameras[idx1], physicalCameras[idx2]))
                }
            }
        }

        return dualCameras
    }

Java

/**
     * Helper class used to encapsulate a logical camera and two underlying
     * physical cameras
     */
    final class DualCamera {
        final String logicalId;
        final String physicalId1;
        final String physicalId2;

        DualCamera(String logicalId, String physicalId1, String physicalId2) {
            this.logicalId = logicalId;
            this.physicalId1 = physicalId1;
            this.physicalId2 = physicalId2;
        }
    }
    List findDualCameras(CameraManager manager, Integer facing) {
        List dualCameras = new ArrayList<>();

        List cameraIdList;
        try {
            cameraIdList = Arrays.asList(manager.getCameraIdList());
        } catch (CameraAccessException e) {
            e.printStackTrace();
            cameraIdList = new ArrayList<>();
        }

        // Iterate over all the available camera characteristics
        cameraIdList.stream()
                .map(id -> {
                    try {
                        CameraCharacteristics characteristics = manager.getCameraCharacteristics(id);
                        return new Pair<>(characteristics, id);
                    } catch (CameraAccessException e) {
                        e.printStackTrace();
                        return null;
                    }
                })
                .filter(pair -> {
                    // Filter by cameras facing the requested direction
                    return (pair != null) &&
                            (facing == null || pair.first.get(CameraCharacteristics.LENS_FACING).equals(facing));
                })
                .filter(pair -> {
                    // Filter by logical cameras
                    // CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA requires API >= 28
                    IntPredicate logicalMultiCameraPred =
                            arg -> arg == CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA;
                    return Arrays.stream(pair.first.get(CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES))
                            .anyMatch(logicalMultiCameraPred);
                })
                .forEach(pair -> {
                    // All possible pairs from the list of physical cameras are valid results
                    // NOTE: There could be N physical cameras as part of a logical camera grouping
                    // getPhysicalCameraIds() requires API >= 28
                    String[] physicalCameras = pair.first.getPhysicalCameraIds().toArray(new String[0]);
                    for (int idx1 = 0; idx1 < physicalCameras.length; idx1++) {
                        for (int idx2 = idx1 + 1; idx2 < physicalCameras.length; idx2++) {
                            dualCameras.add(
                                    new DualCamera(pair.second, physicalCameras[idx1], physicalCameras[idx2]));
                        }
                    }
                });
return dualCameras;
}

物理摄像头的状态处理由逻辑摄像头控制。接收者 打开“双摄像头”打开与实体设备对应的逻辑摄像头 摄像头:

Kotlin

fun openDualCamera(cameraManager: CameraManager,
                       dualCamera: DualCamera,
        // AsyncTask is deprecated beginning API 30
                       executor: Executor = AsyncTask.SERIAL_EXECUTOR,
                       callback: (CameraDevice) -> Unit) {

        // openCamera() requires API >= 28
        cameraManager.openCamera(
            dualCamera.logicalId, executor, object : CameraDevice.StateCallback() {
                override fun onOpened(device: CameraDevice) = callback(device)
                // Omitting for brevity...
                override fun onError(device: CameraDevice, error: Int) = onDisconnected(device)
                override fun onDisconnected(device: CameraDevice) = device.close()
            })
    }

Java

void openDualCamera(CameraManager cameraManager,
                        DualCamera dualCamera,
                        Executor executor,
                        CameraDeviceCallback cameraDeviceCallback
    ) {

        // openCamera() requires API >= 28
        cameraManager.openCamera(dualCamera.logicalId, executor, new CameraDevice.StateCallback() {
            @Override
            public void onOpened(@NonNull CameraDevice cameraDevice) {
               cameraDeviceCallback.callback(cameraDevice);
            }

            @Override
            public void onDisconnected(@NonNull CameraDevice cameraDevice) {
                cameraDevice.close();
            }

            @Override
            public void onError(@NonNull CameraDevice cameraDevice, int i) {
                onDisconnected(cameraDevice);
            }
        });
    }

除了选择要打开的相机外,操作过程与打开 是相机。使用新的 Session Configuration API 指示框架将某些目标与 特定物理摄像头 ID:

Kotlin

/**
 * Helper type definition that encapsulates 3 sets of output targets:
 *
 *   1. Logical camera
 *   2. First physical camera
 *   3. Second physical camera
 */
typealias DualCameraOutputs =
        Triple?, MutableList?, MutableList?>

fun createDualCameraSession(cameraManager: CameraManager,
                            dualCamera: DualCamera,
                            targets: DualCameraOutputs,
                            // AsyncTask is deprecated beginning API 30
                            executor: Executor = AsyncTask.SERIAL_EXECUTOR,
                            callback: (CameraCaptureSession) -> Unit) {

    // Create 3 sets of output configurations: one for the logical camera, and
    // one for each of the physical cameras.
    val outputConfigsLogical = targets.first?.map { OutputConfiguration(it) }
    val outputConfigsPhysical1 = targets.second?.map {
        OutputConfiguration(it).apply { setPhysicalCameraId(dualCamera.physicalId1) } }
    val outputConfigsPhysical2 = targets.third?.map {
        OutputConfiguration(it).apply { setPhysicalCameraId(dualCamera.physicalId2) } }

    // Put all the output configurations into a single flat array
    val outputConfigsAll = arrayOf(
        outputConfigsLogical, outputConfigsPhysical1, outputConfigsPhysical2)
        .filterNotNull().flatMap { it }

    // Instantiate a session configuration that can be used to create a session
    val sessionConfiguration = SessionConfiguration(
        SessionConfiguration.SESSION_REGULAR,
        outputConfigsAll, executor, object : CameraCaptureSession.StateCallback() {
            override fun onConfigured(session: CameraCaptureSession) = callback(session)
            // Omitting for brevity...
            override fun onConfigureFailed(session: CameraCaptureSession) = session.device.close()
        })

    // Open the logical camera using the previously defined function
    openDualCamera(cameraManager, dualCamera, executor = executor) {

        // Finally create the session and return via callback
        it.createCaptureSession(sessionConfiguration)
    }
}

Java

/**
 * Helper class definition that encapsulates 3 sets of output targets:
 * 

* 1. Logical camera * 2. First physical camera * 3. Second physical camera */ final class DualCameraOutputs { private final List logicalCamera; private final List firstPhysicalCamera; private final List secondPhysicalCamera; public DualCameraOutputs(List logicalCamera, List firstPhysicalCamera, List third) { this.logicalCamera = logicalCamera; this.firstPhysicalCamera = firstPhysicalCamera; this.secondPhysicalCamera = third; } public List getLogicalCamera() { return logicalCamera; } public List getFirstPhysicalCamera() { return firstPhysicalCamera; } public List getSecondPhysicalCamera() { return secondPhysicalCamera; } } interface CameraCaptureSessionCallback { void callback(CameraCaptureSession cameraCaptureSession); } void createDualCameraSession(CameraManager cameraManager, DualCamera dualCamera, DualCameraOutputs targets, Executor executor, CameraCaptureSessionCallback cameraCaptureSessionCallback) { // Create 3 sets of output configurations: one for the logical camera, and // one for each of the physical cameras. List outputConfigsLogical = targets.getLogicalCamera().stream() .map(OutputConfiguration::new) .collect(Collectors.toList()); List outputConfigsPhysical1 = targets.getFirstPhysicalCamera().stream() .map(s -> { OutputConfiguration outputConfiguration = new OutputConfiguration(s); outputConfiguration.setPhysicalCameraId(dualCamera.physicalId1); return outputConfiguration; }) .collect(Collectors.toList()); List outputConfigsPhysical2 = targets.getSecondPhysicalCamera().stream() .map(s -> { OutputConfiguration outputConfiguration = new OutputConfiguration(s); outputConfiguration.setPhysicalCameraId(dualCamera.physicalId2); return outputConfiguration; }) .collect(Collectors.toList()); // Put all the output configurations into a single flat array List outputConfigsAll = Stream.of( outputConfigsLogical, outputConfigsPhysical1, outputConfigsPhysical2 ) .filter(Objects::nonNull) .flatMap(Collection::stream) .collect(Collectors.toList()); // Instantiate a session configuration that can be used to create a session SessionConfiguration sessionConfiguration = new SessionConfiguration( SessionConfiguration.SESSION_REGULAR, outputConfigsAll, executor, new CameraCaptureSession.StateCallback() { @Override public void onConfigured(@NonNull CameraCaptureSession cameraCaptureSession) { cameraCaptureSessionCallback.callback(cameraCaptureSession); } // Omitting for brevity... @Override public void onConfigureFailed(@NonNull CameraCaptureSession cameraCaptureSession) { cameraCaptureSession.getDevice().close(); } }); // Open the logical camera using the previously defined function openDualCamera(cameraManager, dualCamera, executor, (CameraDevice c) -> // Finally create the session and return via callback c.createCaptureSession(sessionConfiguration)); }

请参阅 createCaptureSession 了解支持哪种数据流组合。合并数据流 适用于单个逻辑摄像头上的多个视频流。兼容性扩展到 使用相同的配置,并将这些数据流替换为两个数据流 属于同一个逻辑摄像头的两个物理摄像头。

使用 摄像头会话 将所需的 捕获请求。每个 捕获请求的目标从其关联的物理设备接收数据, 或者回退到逻辑摄像头。

Zoom 用例示例

可以将物理摄像头合并到单个视频流中, 用户可以切换使用不同物理摄像头 从而有效地捕获不同的“缩放级别”。

<ph type="x-smartling-placeholder">
</ph>
图 4.:根据缩放级别应用切换摄像头的示例(来自 Pixel 3 广告)

首先选择一对物理摄像头,以便用户切换 。为了达到最佳效果,您可以选择一对 最小和最大焦距

Kotlin

fun findShortLongCameraPair(manager: CameraManager, facing: Int? = null): DualCamera? {

    return findDualCameras(manager, facing).map {
        val characteristics1 = manager.getCameraCharacteristics(it.physicalId1)
        val characteristics2 = manager.getCameraCharacteristics(it.physicalId2)

        // Query the focal lengths advertised by each physical camera
        val focalLengths1 = characteristics1.get(
            CameraCharacteristics.LENS_INFO_AVAILABLE_FOCAL_LENGTHS) ?: floatArrayOf(0F)
        val focalLengths2 = characteristics2.get(
            CameraCharacteristics.LENS_INFO_AVAILABLE_FOCAL_LENGTHS) ?: floatArrayOf(0F)

        // Compute the largest difference between min and max focal lengths between cameras
        val focalLengthsDiff1 = focalLengths2.maxOrNull()!! - focalLengths1.minOrNull()!!
        val focalLengthsDiff2 = focalLengths1.maxOrNull()!! - focalLengths2.minOrNull()!!

        // Return the pair of camera IDs and the difference between min and max focal lengths
        if (focalLengthsDiff1 < focalLengthsDiff2) {
            Pair(DualCamera(it.logicalId, it.physicalId1, it.physicalId2), focalLengthsDiff1)
        } else {
            Pair(DualCamera(it.logicalId, it.physicalId2, it.physicalId1), focalLengthsDiff2)
        }

        // Return only the pair with the largest difference, or null if no pairs are found
    }.maxByOrNull { it.second }?.first
}

Java

// Utility functions to find min/max value in float[]
    float findMax(float[] array) {
        float max = Float.NEGATIVE_INFINITY;
        for(float cur: array)
            max = Math.max(max, cur);
        return max;
    }
    float findMin(float[] array) {
        float min = Float.NEGATIVE_INFINITY;
        for(float cur: array)
            min = Math.min(min, cur);
        return min;
    }

DualCamera findShortLongCameraPair(CameraManager manager, Integer facing) {
        return findDualCameras(manager, facing).stream()
                .map(c -> {
                    CameraCharacteristics characteristics1;
                    CameraCharacteristics characteristics2;
                    try {
                        characteristics1 = manager.getCameraCharacteristics(c.physicalId1);
                        characteristics2 = manager.getCameraCharacteristics(c.physicalId2);
                    } catch (CameraAccessException e) {
                        e.printStackTrace();
                        return null;
                    }

                    // Query the focal lengths advertised by each physical camera
                    float[] focalLengths1 = characteristics1.get(
                            CameraCharacteristics.LENS_INFO_AVAILABLE_FOCAL_LENGTHS);
                    float[] focalLengths2 = characteristics2.get(
                            CameraCharacteristics.LENS_INFO_AVAILABLE_FOCAL_LENGTHS);

                    // Compute the largest difference between min and max focal lengths between cameras
                    Float focalLengthsDiff1 = findMax(focalLengths2) - findMin(focalLengths1);
                    Float focalLengthsDiff2 = findMax(focalLengths1) - findMin(focalLengths2);

                    // Return the pair of camera IDs and the difference between min and max focal lengths
                    if (focalLengthsDiff1 < focalLengthsDiff2) {
                        return new Pair<>(new DualCamera(c.logicalId, c.physicalId1, c.physicalId2), focalLengthsDiff1);
                    } else {
                        return new Pair<>(new DualCamera(c.logicalId, c.physicalId2, c.physicalId1), focalLengthsDiff2);
                    }

                }) // Return only the pair with the largest difference, or null if no pairs are found
                .max(Comparator.comparing(pair -> pair.second)).get().first;
    }

一个合理的架构是 SurfaceViews - 每个数据流一个。 系统会根据用户互动替换这些 SurfaceViews,以便只替换其中一个 始终显示

以下代码展示了如何打开逻辑摄像头并配置摄像头 输出,创建一个相机会话,然后启动两个预览流:

Kotlin

val cameraManager: CameraManager = ...

// Get the two output targets from the activity / fragment
val surface1 = ...  // from SurfaceView
val surface2 = ...  // from SurfaceView

val dualCamera = findShortLongCameraPair(manager)!!
val outputTargets = DualCameraOutputs(
    null, mutableListOf(surface1), mutableListOf(surface2))

// Here you open the logical camera, configure the outputs and create a session
createDualCameraSession(manager, dualCamera, targets = outputTargets) { session ->

  // Create a single request which has one target for each physical camera
  // NOTE: Each target receive frames from only its associated physical camera
  val requestTemplate = CameraDevice.TEMPLATE_PREVIEW
  val captureRequest = session.device.createCaptureRequest(requestTemplate).apply {
    arrayOf(surface1, surface2).forEach { addTarget(it) }
  }.build()

  // Set the sticky request for the session and you are done
  session.setRepeatingRequest(captureRequest, null, null)
}

Java

CameraManager manager = ...;

        // Get the two output targets from the activity / fragment
        Surface surface1 = ...;  // from SurfaceView
        Surface surface2 = ...;  // from SurfaceView

        DualCamera dualCamera = findShortLongCameraPair(manager, null);
                DualCameraOutputs outputTargets = new DualCameraOutputs(
                null, Collections.singletonList(surface1), Collections.singletonList(surface2));

        // Here you open the logical camera, configure the outputs and create a session
        createDualCameraSession(manager, dualCamera, outputTargets, null, (session) -> {
            // Create a single request which has one target for each physical camera
            // NOTE: Each target receive frames from only its associated physical camera
            CaptureRequest.Builder captureRequestBuilder;
            try {
                captureRequestBuilder = session.getDevice().createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);
                Arrays.asList(surface1, surface2).forEach(captureRequestBuilder::addTarget);

                // Set the sticky request for the session and you are done
                session.setRepeatingRequest(captureRequestBuilder.build(), null, null);
            } catch (CameraAccessException e) {
                e.printStackTrace();
            }
        });

剩下要做的就是提供一个界面,供用户在这两者之间进行切换 表面,例如按钮或点按两次 SurfaceView。您甚至可以 执行某种形式的场景分析,并在两个视频流之间切换 。

镜头失真

所有镜头都会产生一定程度的失真。在 Android 中,您可以查询 透镜造成的失真 CameraCharacteristics.LENS_DISTORTION、 该版本取代了现已弃用的 CameraCharacteristics.LENS_RADIAL_DISTORTION。 对于逻辑摄像头,失真最小,您的应用可以使用 呈现不同帧数的变化。对于实体摄像头 镜头配置可能截然不同

一些设备可以通过以下方法实现自动失真校正: CaptureRequest.DISTORTION_CORRECTION_MODE。 失真校正功能在大多数设备上默认处于启用状态。

Kotlin

val cameraSession: CameraCaptureSession = ...

        // Use still capture template to build the capture request
        val captureRequest = cameraSession.device.createCaptureRequest(
            CameraDevice.TEMPLATE_STILL_CAPTURE
        )

        // Determine if this device supports distortion correction
        val characteristics: CameraCharacteristics = ...
        val supportsDistortionCorrection = characteristics.get(
            CameraCharacteristics.DISTORTION_CORRECTION_AVAILABLE_MODES
        )?.contains(
            CameraMetadata.DISTORTION_CORRECTION_MODE_HIGH_QUALITY
        ) ?: false

        if (supportsDistortionCorrection) {
            captureRequest.set(
                CaptureRequest.DISTORTION_CORRECTION_MODE,
                CameraMetadata.DISTORTION_CORRECTION_MODE_HIGH_QUALITY
            )
        }

        // Add output target, set other capture request parameters...

        // Dispatch the capture request
        cameraSession.capture(captureRequest.build(), ...)

Java

CameraCaptureSession cameraSession = ...;

        // Use still capture template to build the capture request
        CaptureRequest.Builder captureRequestBuilder = null;
        try {
            captureRequestBuilder = cameraSession.getDevice().createCaptureRequest(
                    CameraDevice.TEMPLATE_STILL_CAPTURE
            );
        } catch (CameraAccessException e) {
            e.printStackTrace();
        }

        // Determine if this device supports distortion correction
        CameraCharacteristics characteristics = ...;
        boolean supportsDistortionCorrection = Arrays.stream(
                        characteristics.get(
                                CameraCharacteristics.DISTORTION_CORRECTION_AVAILABLE_MODES
                        ))
                .anyMatch(i -> i == CameraMetadata.DISTORTION_CORRECTION_MODE_HIGH_QUALITY);
        if (supportsDistortionCorrection) {
            captureRequestBuilder.set(
                    CaptureRequest.DISTORTION_CORRECTION_MODE,
                    CameraMetadata.DISTORTION_CORRECTION_MODE_HIGH_QUALITY
            );
        }

        // Add output target, set other capture request parameters...

        // Dispatch the capture request
        cameraSession.capture(captureRequestBuilder.build(), ...);

在此模式下设置拍摄请求可能会影响 相机生成的图片您可以选择仅将失真校正设置为开启 静态图片捕获。